linux-kernel-test/drivers/net/wireless/iwmc3200wifi/cfg80211.c

861 lines
21 KiB
C
Raw Normal View History

/*
* Intel Wireless Multicomm 3200 WiFi driver
*
* Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
* Samuel Ortiz <samuel.ortiz@intel.com>
* Zhu Yi <yi.zhu@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/cfg80211.h>
#include "iwm.h"
#include "commands.h"
#include "cfg80211.h"
#include "debug.h"
#define RATETAB_ENT(_rate, _rateid, _flags) \
{ \
.bitrate = (_rate), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_rate iwm_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define iwm_a_rates (iwm_rates + 4)
#define iwm_a_rates_size 8
#define iwm_g_rates (iwm_rates + 0)
#define iwm_g_rates_size 12
static struct ieee80211_channel iwm_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel iwm_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band iwm_band_2ghz = {
.channels = iwm_2ghz_channels,
.n_channels = ARRAY_SIZE(iwm_2ghz_channels),
.bitrates = iwm_g_rates,
.n_bitrates = iwm_g_rates_size,
};
static struct ieee80211_supported_band iwm_band_5ghz = {
.channels = iwm_5ghz_a_channels,
.n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
.bitrates = iwm_a_rates,
.n_bitrates = iwm_a_rates_size,
};
static int iwm_key_init(struct iwm_key *key, u8 key_index,
const u8 *mac_addr, struct key_params *params)
{
key->hdr.key_idx = key_index;
if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
key->hdr.multicast = 1;
memset(key->hdr.mac, 0xff, ETH_ALEN);
} else {
key->hdr.multicast = 0;
memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
}
if (params) {
if (params->key_len > WLAN_MAX_KEY_LEN ||
params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
return -EINVAL;
key->cipher = params->cipher;
key->key_len = params->key_len;
key->seq_len = params->seq_len;
memcpy(key->key, params->key, key->key_len);
memcpy(key->seq, params->seq, key->seq_len);
}
return 0;
}
static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr,
struct key_params *params)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
int ret;
IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
memset(key, 0, sizeof(struct iwm_key));
ret = iwm_key_init(key, key_index, mac_addr, params);
if (ret < 0) {
IWM_ERR(iwm, "Invalid key_params\n");
return ret;
}
return iwm_set_key(iwm, 0, key);
}
static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr, void *cookie,
void (*callback)(void *cookie,
struct key_params*))
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
struct key_params params;
IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
memset(&params, 0, sizeof(params));
params.cipher = key->cipher;
params.key_len = key->key_len;
params.seq_len = key->seq_len;
params.seq = key->seq;
params.key = key->key;
callback(cookie, &params);
return key->key_len ? 0 : -ENOENT;
}
static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
if (!iwm->keys[key_index].key_len) {
IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
return 0;
}
if (key_index == iwm->default_key)
iwm->default_key = -1;
return iwm_set_key(iwm, 1, key);
}
static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
struct net_device *ndev,
u8 key_index)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
if (!iwm->keys[key_index].key_len) {
IWM_ERR(iwm, "Key %d not used\n", key_index);
return -EINVAL;
}
iwm->default_key = key_index;
return iwm_set_tx_key(iwm, key_index);
}
static int iwm_cfg80211_get_station(struct wiphy *wiphy,
struct net_device *ndev,
u8 *mac, struct station_info *sinfo)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
if (memcmp(mac, iwm->bssid, ETH_ALEN))
return -ENOENT;
sinfo->filled |= STATION_INFO_TX_BITRATE;
sinfo->txrate.legacy = iwm->rate * 10;
if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = iwm->wstats.qual.level;
}
return 0;
}
int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
{
struct wiphy *wiphy = iwm_to_wiphy(iwm);
struct iwm_bss_info *bss;
struct iwm_umac_notif_bss_info *umac_bss;
struct ieee80211_mgmt *mgmt;
struct ieee80211_channel *channel;
struct ieee80211_supported_band *band;
s32 signal;
int freq;
list_for_each_entry(bss, &iwm->bss_list, node) {
umac_bss = bss->bss;
mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
if (umac_bss->band == UMAC_BAND_2GHZ)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else if (umac_bss->band == UMAC_BAND_5GHZ)
band = wiphy->bands[IEEE80211_BAND_5GHZ];
else {
IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
return -EINVAL;
}
freq = ieee80211_channel_to_frequency(umac_bss->channel);
channel = ieee80211_get_channel(wiphy, freq);
signal = umac_bss->rssi * 100;
if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
le16_to_cpu(umac_bss->frame_len),
signal, GFP_KERNEL))
return -EINVAL;
}
return 0;
}
static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct wireless_dev *wdev;
struct iwm_priv *iwm;
u32 old_mode;
wdev = ndev->ieee80211_ptr;
iwm = ndev_to_iwm(ndev);
old_mode = iwm->conf.mode;
switch (type) {
case NL80211_IFTYPE_STATION:
iwm->conf.mode = UMAC_MODE_BSS;
break;
case NL80211_IFTYPE_ADHOC:
iwm->conf.mode = UMAC_MODE_IBSS;
break;
default:
return -EOPNOTSUPP;
}
wdev->iftype = type;
if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
return 0;
iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
if (iwm->umac_profile_active)
iwm_invalidate_mlme_profile(iwm);
return 0;
}
static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
int ret;
if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
IWM_ERR(iwm, "Scan while device is not ready\n");
return -EIO;
}
if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
IWM_ERR(iwm, "Scanning already\n");
return -EAGAIN;
}
if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
IWM_ERR(iwm, "Scanning being aborted\n");
return -EAGAIN;
}
set_bit(IWM_STATUS_SCANNING, &iwm->status);
ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
if (ret) {
clear_bit(IWM_STATUS_SCANNING, &iwm->status);
return ret;
}
iwm->scan_request = request;
return 0;
}
static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(iwm->conf.rts_threshold != wiphy->rts_threshold)) {
int ret;
iwm->conf.rts_threshold = wiphy->rts_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_RTS_THRESHOLD,
iwm->conf.rts_threshold);
if (ret < 0)
return ret;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(iwm->conf.frag_threshold != wiphy->frag_threshold)) {
int ret;
iwm->conf.frag_threshold = wiphy->frag_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
CFG_FRAG_THRESHOLD,
iwm->conf.frag_threshold);
if (ret < 0)
return ret;
}
return 0;
}
static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
struct ieee80211_channel *chan = params->channel;
if (!test_bit(IWM_STATUS_READY, &iwm->status))
return -EIO;
/* UMAC doesn't support creating or joining an IBSS network
* with specified bssid. */
if (params->bssid)
return -EOPNOTSUPP;
iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
iwm->umac_profile->ibss.band = chan->band;
iwm->umac_profile->ibss.channel = iwm->channel;
iwm->umac_profile->ssid.ssid_len = params->ssid_len;
memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
return iwm_send_mlme_profile(iwm);
}
static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
if (iwm->umac_profile_active)
return iwm_invalidate_mlme_profile(iwm);
return 0;
}
static int iwm_set_auth_type(struct iwm_priv *iwm,
enum nl80211_auth_type sme_auth_type)
{
u8 *auth_type = &iwm->umac_profile->sec.auth_type;
switch (sme_auth_type) {
case NL80211_AUTHTYPE_AUTOMATIC:
case NL80211_AUTHTYPE_OPEN_SYSTEM:
IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
*auth_type = UMAC_AUTH_TYPE_OPEN;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
if (iwm->umac_profile->sec.flags &
(UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
*auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
} else {
IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
*auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
}
break;
default:
IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
return -ENOTSUPP;
}
return 0;
}
static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
{
IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version);
if (!wpa_version) {
iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
return 0;
}
if (wpa_version & NL80211_WPA_VERSION_1)
iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WPA_ON_MSK;
if (wpa_version & NL80211_WPA_VERSION_2)
iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
return 0;
}
static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
{
u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
&iwm->umac_profile->sec.mcast_cipher;
if (!cipher) {
*profile_cipher = UMAC_CIPHER_TYPE_NONE;
return 0;
}
IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm',
cipher);
switch (cipher) {
case IW_AUTH_CIPHER_NONE:
*profile_cipher = UMAC_CIPHER_TYPE_NONE;
break;
case WLAN_CIPHER_SUITE_WEP40:
*profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
break;
case WLAN_CIPHER_SUITE_WEP104:
*profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
break;
case WLAN_CIPHER_SUITE_TKIP:
*profile_cipher = UMAC_CIPHER_TYPE_TKIP;
break;
case WLAN_CIPHER_SUITE_CCMP:
*profile_cipher = UMAC_CIPHER_TYPE_CCMP;
break;
default:
IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
return -ENOTSUPP;
}
return 0;
}
static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
{
u8 *auth_type = &iwm->umac_profile->sec.auth_type;
IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
if (key_mgt == WLAN_AKM_SUITE_8021X)
*auth_type = UMAC_AUTH_TYPE_8021X;
else if (key_mgt == WLAN_AKM_SUITE_PSK) {
if (iwm->umac_profile->sec.flags &
(UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
*auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
else
*auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
} else {
IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
return -EINVAL;
}
return 0;
}
static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
struct ieee80211_channel *chan = sme->channel;
struct key_params key_param;
int ret;
if (!test_bit(IWM_STATUS_READY, &iwm->status))
return -EIO;
if (!sme->ssid)
return -EINVAL;
if (iwm->umac_profile_active) {
ret = iwm_invalidate_mlme_profile(iwm);
if (ret) {
IWM_ERR(iwm, "Couldn't invalidate profile\n");
return ret;
}
}
if (chan)
iwm->channel =
ieee80211_frequency_to_channel(chan->center_freq);
iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
if (sme->bssid) {
IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
iwm->umac_profile->bss_num = 1;
} else {
memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
iwm->umac_profile->bss_num = 0;
}
ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
if (ret < 0)
return ret;
ret = iwm_set_auth_type(iwm, sme->auth_type);
if (ret < 0)
return ret;
if (sme->crypto.n_ciphers_pairwise) {
ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
true);
if (ret < 0)
return ret;
}
ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
if (ret < 0)
return ret;
if (sme->crypto.n_akm_suites) {
ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
if (ret < 0)
return ret;
}
/*
* We save the WEP key in case we want to do shared authentication.
* We have to do it so because UMAC will assert whenever it gets a
* key before a profile.
*/
if (sme->key) {
key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL);
if (key_param.key == NULL)
return -ENOMEM;
key_param.key_len = sme->key_len;
key_param.seq_len = 0;
key_param.cipher = sme->crypto.ciphers_pairwise[0];
ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx,
NULL, &key_param);
kfree(key_param.key);
if (ret < 0) {
IWM_ERR(iwm, "Invalid key_params\n");
return ret;
}
iwm->default_key = sme->key_idx;
}
/* WPA and open AUTH type from wpa_s means WPS (a.k.a. WSC) */
if ((iwm->umac_profile->sec.flags &
(UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) &&
iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_OPEN) {
iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WSC_ON_MSK;
}
ret = iwm_send_mlme_profile(iwm);
if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK ||
sme->key == NULL)
return ret;
/*
* We want to do shared auth.
* We need to actually set the key we previously cached,
* and then tell the UMAC it's the default one.
* That will trigger the auth+assoc UMAC machinery, and again,
* this must be done after setting the profile.
*/
ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]);
if (ret < 0)
return ret;
return iwm_set_tx_key(iwm, iwm->default_key);
}
static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
u16 reason_code)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
if (iwm->umac_profile_active)
iwm_invalidate_mlme_profile(iwm);
return 0;
}
static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
enum tx_power_setting type, int dbm)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
int ret;
switch (type) {
case TX_POWER_AUTOMATIC:
return 0;
case TX_POWER_FIXED:
if (!test_bit(IWM_STATUS_READY, &iwm->status))
return 0;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_TX_PWR_LIMIT_USR, dbm * 2);
if (ret < 0)
return ret;
return iwm_tx_power_trigger(iwm);
default:
IWM_ERR(iwm, "Unsupported power type: %d\n", type);
return -EOPNOTSUPP;
}
return 0;
}
static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
*dbm = iwm->txpower >> 1;
return 0;
}
static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
struct net_device *dev,
bool enabled, int timeout)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
u32 power_index;
if (enabled)
power_index = IWM_POWER_INDEX_DEFAULT;
else
power_index = IWM_POWER_INDEX_MIN;
if (power_index == iwm->conf.power_index)
return 0;
iwm->conf.power_index = power_index;
return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_POWER_INDEX, iwm->conf.power_index);
}
static int iwm_cfg80211_set_pmksa(struct wiphy *wiphy,
struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_ADD);
}
static int iwm_cfg80211_del_pmksa(struct wiphy *wiphy,
struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_DEL);
}
static int iwm_cfg80211_flush_pmksa(struct wiphy *wiphy,
struct net_device *netdev)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
struct cfg80211_pmksa pmksa;
memset(&pmksa, 0, sizeof(struct cfg80211_pmksa));
return iwm_send_pmkid_update(iwm, &pmksa, IWM_CMD_PMKID_FLUSH);
}
static struct cfg80211_ops iwm_cfg80211_ops = {
.change_virtual_intf = iwm_cfg80211_change_iface,
.add_key = iwm_cfg80211_add_key,
.get_key = iwm_cfg80211_get_key,
.del_key = iwm_cfg80211_del_key,
.set_default_key = iwm_cfg80211_set_default_key,
.get_station = iwm_cfg80211_get_station,
.scan = iwm_cfg80211_scan,
.set_wiphy_params = iwm_cfg80211_set_wiphy_params,
.connect = iwm_cfg80211_connect,
.disconnect = iwm_cfg80211_disconnect,
.join_ibss = iwm_cfg80211_join_ibss,
.leave_ibss = iwm_cfg80211_leave_ibss,
.set_tx_power = iwm_cfg80211_set_txpower,
.get_tx_power = iwm_cfg80211_get_txpower,
.set_power_mgmt = iwm_cfg80211_set_power_mgmt,
.set_pmksa = iwm_cfg80211_set_pmksa,
.del_pmksa = iwm_cfg80211_del_pmksa,
.flush_pmksa = iwm_cfg80211_flush_pmksa,
};
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
};
struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
{
int ret = 0;
struct wireless_dev *wdev;
/*
* We're trying to have the following memory
* layout:
*
* +-------------------------+
* | struct wiphy |
* +-------------------------+
* | struct iwm_priv |
* +-------------------------+
* | bus private data |
* | (e.g. iwm_priv_sdio) |
* +-------------------------+
*
*/
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev) {
dev_err(dev, "Couldn't allocate wireless device\n");
return ERR_PTR(-ENOMEM);
}
wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
sizeof(struct iwm_priv) + sizeof_bus);
if (!wdev->wiphy) {
dev_err(dev, "Couldn't allocate wiphy device\n");
ret = -ENOMEM;
goto out_err_new;
}
set_wiphy_dev(wdev->wiphy, dev);
wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
wdev->wiphy->max_num_pmkids = UMAC_MAX_NUM_PMKIDS;
wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
ret = wiphy_register(wdev->wiphy);
if (ret < 0) {
dev_err(dev, "Couldn't register wiphy device\n");
goto out_err_register;
}
return wdev;
out_err_register:
wiphy_free(wdev->wiphy);
out_err_new:
kfree(wdev);
return ERR_PTR(ret);
}
void iwm_wdev_free(struct iwm_priv *iwm)
{
struct wireless_dev *wdev = iwm_to_wdev(iwm);
if (!wdev)
return;
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
}