x86: share rtc code
Remove the rtc code from time_64.c and add the extra bits to the i386 path. The ACPI century check is probably valid for i386 as well, but this is material for a separate patch. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
committed by
Ingo Molnar
parent
fe599f9fbc
commit
1122b134bc
@@ -11,7 +11,7 @@ obj-y := process_64.o signal_64.o entry_64.o traps_64.o irq_64.o \
|
|||||||
x8664_ksyms_64.o i387_64.o syscall_64.o vsyscall_64.o \
|
x8664_ksyms_64.o i387_64.o syscall_64.o vsyscall_64.o \
|
||||||
setup64.o bootflag.o e820_64.o reboot_64.o quirks.o i8237.o \
|
setup64.o bootflag.o e820_64.o reboot_64.o quirks.o i8237.o \
|
||||||
pci-dma_64.o pci-nommu_64.o alternative.o hpet.o tsc_64.o bugs_64.o \
|
pci-dma_64.o pci-nommu_64.o alternative.o hpet.o tsc_64.o bugs_64.o \
|
||||||
i8253.o io_delay.o
|
i8253.o io_delay.o rtc.o
|
||||||
|
|
||||||
obj-$(CONFIG_STACKTRACE) += stacktrace.o
|
obj-$(CONFIG_STACKTRACE) += stacktrace.o
|
||||||
obj-y += cpu/
|
obj-y += cpu/
|
||||||
|
@@ -1,11 +1,32 @@
|
|||||||
/*
|
/*
|
||||||
* RTC related functions
|
* RTC related functions
|
||||||
*/
|
*/
|
||||||
|
#include <linux/acpi.h>
|
||||||
#include <linux/bcd.h>
|
#include <linux/bcd.h>
|
||||||
#include <linux/mc146818rtc.h>
|
#include <linux/mc146818rtc.h>
|
||||||
|
|
||||||
#include <asm/time.h>
|
#include <asm/time.h>
|
||||||
|
|
||||||
|
#ifdef CONFIG_X86_32
|
||||||
|
# define CMOS_YEARS_OFFS 1900
|
||||||
|
/*
|
||||||
|
* This is a special lock that is owned by the CPU and holds the index
|
||||||
|
* register we are working with. It is required for NMI access to the
|
||||||
|
* CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
|
||||||
|
*/
|
||||||
|
volatile unsigned long cmos_lock = 0;
|
||||||
|
EXPORT_SYMBOL(cmos_lock);
|
||||||
|
#else
|
||||||
|
/*
|
||||||
|
* x86-64 systems only exists since 2002.
|
||||||
|
* This will work up to Dec 31, 2100
|
||||||
|
*/
|
||||||
|
# define CMOS_YEARS_OFFS 2000
|
||||||
|
#endif
|
||||||
|
|
||||||
|
DEFINE_SPINLOCK(rtc_lock);
|
||||||
|
EXPORT_SYMBOL(rtc_lock);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
|
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
|
||||||
* called 500 ms after the second nowtime has started, because when
|
* called 500 ms after the second nowtime has started, because when
|
||||||
@@ -22,10 +43,12 @@ int mach_set_rtc_mmss(unsigned long nowtime)
|
|||||||
int real_seconds, real_minutes, cmos_minutes;
|
int real_seconds, real_minutes, cmos_minutes;
|
||||||
unsigned char save_control, save_freq_select;
|
unsigned char save_control, save_freq_select;
|
||||||
|
|
||||||
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
|
/* tell the clock it's being set */
|
||||||
|
save_control = CMOS_READ(RTC_CONTROL);
|
||||||
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
|
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
|
||||||
|
|
||||||
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
|
/* stop and reset prescaler */
|
||||||
|
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
||||||
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
|
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
|
||||||
|
|
||||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
||||||
@@ -40,8 +63,9 @@ int mach_set_rtc_mmss(unsigned long nowtime)
|
|||||||
*/
|
*/
|
||||||
real_seconds = nowtime % 60;
|
real_seconds = nowtime % 60;
|
||||||
real_minutes = nowtime / 60;
|
real_minutes = nowtime / 60;
|
||||||
|
/* correct for half hour time zone */
|
||||||
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
|
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
|
||||||
real_minutes += 30; /* correct for half hour time zone */
|
real_minutes += 30;
|
||||||
real_minutes %= 60;
|
real_minutes %= 60;
|
||||||
|
|
||||||
if (abs(real_minutes - cmos_minutes) < 30) {
|
if (abs(real_minutes - cmos_minutes) < 30) {
|
||||||
@@ -73,18 +97,32 @@ int mach_set_rtc_mmss(unsigned long nowtime)
|
|||||||
|
|
||||||
unsigned long mach_get_cmos_time(void)
|
unsigned long mach_get_cmos_time(void)
|
||||||
{
|
{
|
||||||
unsigned int year, mon, day, hour, min, sec;
|
unsigned int year, mon, day, hour, min, sec, century = 0;
|
||||||
|
|
||||||
do {
|
/*
|
||||||
sec = CMOS_READ(RTC_SECONDS);
|
* If UIP is clear, then we have >= 244 microseconds before
|
||||||
min = CMOS_READ(RTC_MINUTES);
|
* RTC registers will be updated. Spec sheet says that this
|
||||||
hour = CMOS_READ(RTC_HOURS);
|
* is the reliable way to read RTC - registers. If UIP is set
|
||||||
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
* then the register access might be invalid.
|
||||||
mon = CMOS_READ(RTC_MONTH);
|
*/
|
||||||
year = CMOS_READ(RTC_YEAR);
|
while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
|
||||||
} while (sec != CMOS_READ(RTC_SECONDS));
|
cpu_relax();
|
||||||
|
|
||||||
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
sec = CMOS_READ(RTC_SECONDS);
|
||||||
|
min = CMOS_READ(RTC_MINUTES);
|
||||||
|
hour = CMOS_READ(RTC_HOURS);
|
||||||
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
||||||
|
mon = CMOS_READ(RTC_MONTH);
|
||||||
|
year = CMOS_READ(RTC_YEAR);
|
||||||
|
|
||||||
|
#if defined(CONFIG_ACPI) && defined(CONFIG_X86_64)
|
||||||
|
/* CHECKME: Is this really 64bit only ??? */
|
||||||
|
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
||||||
|
acpi_gbl_FADT.century)
|
||||||
|
century = CMOS_READ(acpi_gbl_FADT.century);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (RTC_ALWAYS_BCD || !(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)) {
|
||||||
BCD_TO_BIN(sec);
|
BCD_TO_BIN(sec);
|
||||||
BCD_TO_BIN(min);
|
BCD_TO_BIN(min);
|
||||||
BCD_TO_BIN(hour);
|
BCD_TO_BIN(hour);
|
||||||
@@ -93,24 +131,19 @@ unsigned long mach_get_cmos_time(void)
|
|||||||
BCD_TO_BIN(year);
|
BCD_TO_BIN(year);
|
||||||
}
|
}
|
||||||
|
|
||||||
year += 1900;
|
if (century) {
|
||||||
if (year < 1970)
|
BCD_TO_BIN(century);
|
||||||
year += 100;
|
year += century * 100;
|
||||||
|
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
||||||
|
} else {
|
||||||
|
year += CMOS_YEARS_OFFS;
|
||||||
|
if (year < 1970)
|
||||||
|
year += 100;
|
||||||
|
}
|
||||||
|
|
||||||
return mktime(year, mon, day, hour, min, sec);
|
return mktime(year, mon, day, hour, min, sec);
|
||||||
}
|
}
|
||||||
|
|
||||||
DEFINE_SPINLOCK(rtc_lock);
|
|
||||||
EXPORT_SYMBOL(rtc_lock);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* This is a special lock that is owned by the CPU and holds the index
|
|
||||||
* register we are working with. It is required for NMI access to the
|
|
||||||
* CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
|
|
||||||
*/
|
|
||||||
volatile unsigned long cmos_lock = 0;
|
|
||||||
EXPORT_SYMBOL(cmos_lock);
|
|
||||||
|
|
||||||
/* Routines for accessing the CMOS RAM/RTC. */
|
/* Routines for accessing the CMOS RAM/RTC. */
|
||||||
unsigned char rtc_cmos_read(unsigned char addr)
|
unsigned char rtc_cmos_read(unsigned char addr)
|
||||||
{
|
{
|
||||||
@@ -138,8 +171,6 @@ static int set_rtc_mmss(unsigned long nowtime)
|
|||||||
int retval;
|
int retval;
|
||||||
unsigned long flags;
|
unsigned long flags;
|
||||||
|
|
||||||
/* gets recalled with irq locally disabled */
|
|
||||||
/* XXX - does irqsave resolve this? -johnstul */
|
|
||||||
spin_lock_irqsave(&rtc_lock, flags);
|
spin_lock_irqsave(&rtc_lock, flags);
|
||||||
retval = set_wallclock(nowtime);
|
retval = set_wallclock(nowtime);
|
||||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
||||||
@@ -150,8 +181,7 @@ static int set_rtc_mmss(unsigned long nowtime)
|
|||||||
/* not static: needed by APM */
|
/* not static: needed by APM */
|
||||||
unsigned long read_persistent_clock(void)
|
unsigned long read_persistent_clock(void)
|
||||||
{
|
{
|
||||||
unsigned long retval;
|
unsigned long retval, flags;
|
||||||
unsigned long flags;
|
|
||||||
|
|
||||||
spin_lock_irqsave(&rtc_lock, flags);
|
spin_lock_irqsave(&rtc_lock, flags);
|
||||||
retval = get_wallclock();
|
retval = get_wallclock();
|
||||||
|
@@ -46,9 +46,6 @@
|
|||||||
#include <asm/nmi.h>
|
#include <asm/nmi.h>
|
||||||
#include <asm/vgtod.h>
|
#include <asm/vgtod.h>
|
||||||
|
|
||||||
DEFINE_SPINLOCK(rtc_lock);
|
|
||||||
EXPORT_SYMBOL(rtc_lock);
|
|
||||||
|
|
||||||
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
||||||
|
|
||||||
unsigned long profile_pc(struct pt_regs *regs)
|
unsigned long profile_pc(struct pt_regs *regs)
|
||||||
@@ -69,103 +66,6 @@ unsigned long profile_pc(struct pt_regs *regs)
|
|||||||
}
|
}
|
||||||
EXPORT_SYMBOL(profile_pc);
|
EXPORT_SYMBOL(profile_pc);
|
||||||
|
|
||||||
/* Routines for accessing the CMOS RAM/RTC. */
|
|
||||||
unsigned char rtc_cmos_read(unsigned char addr)
|
|
||||||
{
|
|
||||||
unsigned char val;
|
|
||||||
lock_cmos_prefix(addr);
|
|
||||||
outb_p(addr, RTC_PORT(0));
|
|
||||||
val = inb_p(RTC_PORT(1));
|
|
||||||
lock_cmos_suffix(addr);
|
|
||||||
return val;
|
|
||||||
}
|
|
||||||
EXPORT_SYMBOL(rtc_cmos_read);
|
|
||||||
|
|
||||||
void rtc_cmos_write(unsigned char val, unsigned char addr)
|
|
||||||
{
|
|
||||||
lock_cmos_prefix(addr);
|
|
||||||
outb_p(addr, RTC_PORT(0));
|
|
||||||
outb_p(val, RTC_PORT(1));
|
|
||||||
lock_cmos_suffix(addr);
|
|
||||||
}
|
|
||||||
EXPORT_SYMBOL(rtc_cmos_write);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
|
|
||||||
* ms after the second nowtime has started, because when nowtime is written
|
|
||||||
* into the registers of the CMOS clock, it will jump to the next second
|
|
||||||
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
|
|
||||||
* sheet for details.
|
|
||||||
*/
|
|
||||||
|
|
||||||
static int set_rtc_mmss(unsigned long nowtime)
|
|
||||||
{
|
|
||||||
int retval = 0;
|
|
||||||
int real_seconds, real_minutes, cmos_minutes;
|
|
||||||
unsigned char control, freq_select;
|
|
||||||
unsigned long flags;
|
|
||||||
|
|
||||||
/*
|
|
||||||
* set_rtc_mmss is called when irqs are enabled, so disable irqs here
|
|
||||||
*/
|
|
||||||
spin_lock_irqsave(&rtc_lock, flags);
|
|
||||||
/*
|
|
||||||
* Tell the clock it's being set and stop it.
|
|
||||||
*/
|
|
||||||
control = CMOS_READ(RTC_CONTROL);
|
|
||||||
CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
|
|
||||||
|
|
||||||
freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
||||||
CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
|
|
||||||
|
|
||||||
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
||||||
BCD_TO_BIN(cmos_minutes);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* since we're only adjusting minutes and seconds, don't interfere with hour
|
|
||||||
* overflow. This avoids messing with unknown time zones but requires your RTC
|
|
||||||
* not to be off by more than 15 minutes. Since we're calling it only when
|
|
||||||
* our clock is externally synchronized using NTP, this shouldn't be a problem.
|
|
||||||
*/
|
|
||||||
|
|
||||||
real_seconds = nowtime % 60;
|
|
||||||
real_minutes = nowtime / 60;
|
|
||||||
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
|
|
||||||
real_minutes += 30; /* correct for half hour time zone */
|
|
||||||
real_minutes %= 60;
|
|
||||||
|
|
||||||
if (abs(real_minutes - cmos_minutes) >= 30) {
|
|
||||||
printk(KERN_WARNING "time.c: can't update CMOS clock "
|
|
||||||
"from %d to %d\n", cmos_minutes, real_minutes);
|
|
||||||
retval = -1;
|
|
||||||
} else {
|
|
||||||
BIN_TO_BCD(real_seconds);
|
|
||||||
BIN_TO_BCD(real_minutes);
|
|
||||||
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
|
||||||
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* The following flags have to be released exactly in this order, otherwise the
|
|
||||||
* DS12887 (popular MC146818A clone with integrated battery and quartz) will
|
|
||||||
* not reset the oscillator and will not update precisely 500 ms later. You
|
|
||||||
* won't find this mentioned in the Dallas Semiconductor data sheets, but who
|
|
||||||
* believes data sheets anyway ... -- Markus Kuhn
|
|
||||||
*/
|
|
||||||
|
|
||||||
CMOS_WRITE(control, RTC_CONTROL);
|
|
||||||
CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
|
|
||||||
|
|
||||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
int update_persistent_clock(struct timespec now)
|
|
||||||
{
|
|
||||||
return set_rtc_mmss(now.tv_sec);
|
|
||||||
}
|
|
||||||
|
|
||||||
static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
||||||
{
|
{
|
||||||
add_pda(irq0_irqs, 1);
|
add_pda(irq0_irqs, 1);
|
||||||
@@ -175,63 +75,6 @@ static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
|||||||
return IRQ_HANDLED;
|
return IRQ_HANDLED;
|
||||||
}
|
}
|
||||||
|
|
||||||
unsigned long read_persistent_clock(void)
|
|
||||||
{
|
|
||||||
unsigned int year, mon, day, hour, min, sec;
|
|
||||||
unsigned long flags;
|
|
||||||
unsigned century = 0;
|
|
||||||
|
|
||||||
spin_lock_irqsave(&rtc_lock, flags);
|
|
||||||
/*
|
|
||||||
* if UIP is clear, then we have >= 244 microseconds before RTC
|
|
||||||
* registers will be updated. Spec sheet says that this is the
|
|
||||||
* reliable way to read RTC - registers invalid (off bus) during update
|
|
||||||
*/
|
|
||||||
while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
|
|
||||||
cpu_relax();
|
|
||||||
|
|
||||||
|
|
||||||
/* now read all RTC registers while stable with interrupts disabled */
|
|
||||||
sec = CMOS_READ(RTC_SECONDS);
|
|
||||||
min = CMOS_READ(RTC_MINUTES);
|
|
||||||
hour = CMOS_READ(RTC_HOURS);
|
|
||||||
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
||||||
mon = CMOS_READ(RTC_MONTH);
|
|
||||||
year = CMOS_READ(RTC_YEAR);
|
|
||||||
#ifdef CONFIG_ACPI
|
|
||||||
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
|
||||||
acpi_gbl_FADT.century)
|
|
||||||
century = CMOS_READ(acpi_gbl_FADT.century);
|
|
||||||
#endif
|
|
||||||
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* We know that x86-64 always uses BCD format, no need to check the
|
|
||||||
* config register.
|
|
||||||
*/
|
|
||||||
|
|
||||||
BCD_TO_BIN(sec);
|
|
||||||
BCD_TO_BIN(min);
|
|
||||||
BCD_TO_BIN(hour);
|
|
||||||
BCD_TO_BIN(day);
|
|
||||||
BCD_TO_BIN(mon);
|
|
||||||
BCD_TO_BIN(year);
|
|
||||||
|
|
||||||
if (century) {
|
|
||||||
BCD_TO_BIN(century);
|
|
||||||
year += century * 100;
|
|
||||||
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
|
||||||
} else {
|
|
||||||
/*
|
|
||||||
* x86-64 systems only exists since 2002.
|
|
||||||
* This will work up to Dec 31, 2100
|
|
||||||
*/
|
|
||||||
year += 2000;
|
|
||||||
}
|
|
||||||
|
|
||||||
return mktime(year, mon, day, hour, min, sec);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
/* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
||||||
* processor frequency */
|
* processor frequency */
|
||||||
#define TICK_COUNT 100000000
|
#define TICK_COUNT 100000000
|
||||||
|
Reference in New Issue
Block a user