Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
This commit is contained in:
Linus Torvalds
2005-04-16 15:20:36 -07:00
commit 1da177e4c3
17291 changed files with 6718755 additions and 0 deletions

23
arch/sparc/mm/Makefile Normal file
View File

@@ -0,0 +1,23 @@
# $Id: Makefile,v 1.38 2000/12/15 00:41:22 davem Exp $
# Makefile for the linux Sparc-specific parts of the memory manager.
#
EXTRA_AFLAGS := -ansi
obj-y := fault.o init.o loadmmu.o generic.o extable.o btfixup.o
ifeq ($(CONFIG_SUN4),y)
obj-y += nosrmmu.o
else
obj-y += srmmu.o iommu.o io-unit.o hypersparc.o viking.o tsunami.o swift.o
endif
ifdef CONFIG_HIGHMEM
obj-y += highmem.o
endif
ifdef CONFIG_SMP
obj-y += nosun4c.o
else
obj-y += sun4c.o
endif

336
arch/sparc/mm/btfixup.c Normal file
View File

@@ -0,0 +1,336 @@
/* $Id: btfixup.c,v 1.10 2000/05/09 17:40:13 davem Exp $
* btfixup.c: Boot time code fixup and relocator, so that
* we can get rid of most indirect calls to achieve single
* image sun4c and srmmu kernel.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/btfixup.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/system.h>
#include <asm/cacheflush.h>
#define BTFIXUP_OPTIMIZE_NOP
#define BTFIXUP_OPTIMIZE_OTHER
extern char *srmmu_name;
static char version[] __initdata = "Boot time fixup v1.6. 4/Mar/98 Jakub Jelinek (jj@ultra.linux.cz). Patching kernel for ";
#ifdef CONFIG_SUN4
static char str_sun4c[] __initdata = "sun4\n";
#else
static char str_sun4c[] __initdata = "sun4c\n";
#endif
static char str_srmmu[] __initdata = "srmmu[%s]/";
static char str_iommu[] __initdata = "iommu\n";
static char str_iounit[] __initdata = "io-unit\n";
static int visited __initdata = 0;
extern unsigned int ___btfixup_start[], ___btfixup_end[], __init_begin[], __init_end[], __init_text_end[];
extern unsigned int _stext[], _end[], __start___ksymtab[], __stop___ksymtab[];
static char wrong_f[] __initdata = "Trying to set f fixup %p to invalid function %08x\n";
static char wrong_b[] __initdata = "Trying to set b fixup %p to invalid function %08x\n";
static char wrong_s[] __initdata = "Trying to set s fixup %p to invalid value %08x\n";
static char wrong_h[] __initdata = "Trying to set h fixup %p to invalid value %08x\n";
static char wrong_a[] __initdata = "Trying to set a fixup %p to invalid value %08x\n";
static char wrong[] __initdata = "Wrong address for %c fixup %p\n";
static char insn_f[] __initdata = "Fixup f %p refers to weird instructions at %p[%08x,%08x]\n";
static char insn_b[] __initdata = "Fixup b %p doesn't refer to a SETHI at %p[%08x]\n";
static char insn_s[] __initdata = "Fixup s %p doesn't refer to an OR at %p[%08x]\n";
static char insn_h[] __initdata = "Fixup h %p doesn't refer to a SETHI at %p[%08x]\n";
static char insn_a[] __initdata = "Fixup a %p doesn't refer to a SETHI nor OR at %p[%08x]\n";
static char insn_i[] __initdata = "Fixup i %p doesn't refer to a valid instruction at %p[%08x]\n";
static char fca_und[] __initdata = "flush_cache_all undefined in btfixup()\n";
static char wrong_setaddr[] __initdata = "Garbled CALL/INT patch at %p[%08x,%08x,%08x]=%08x\n";
#ifdef BTFIXUP_OPTIMIZE_OTHER
static void __init set_addr(unsigned int *addr, unsigned int q1, int fmangled, unsigned int value)
{
if (!fmangled)
*addr = value;
else {
unsigned int *q = (unsigned int *)q1;
if (*addr == 0x01000000) {
/* Noped */
*q = value;
} else if (addr[-1] == *q) {
/* Moved */
addr[-1] = value;
*q = value;
} else {
prom_printf(wrong_setaddr, addr-1, addr[-1], *addr, *q, value);
prom_halt();
}
}
}
#else
static __inline__ void set_addr(unsigned int *addr, unsigned int q1, int fmangled, unsigned int value)
{
*addr = value;
}
#endif
void __init btfixup(void)
{
unsigned int *p, *q;
int type, count;
unsigned insn;
unsigned *addr;
int fmangled = 0;
void (*flush_cacheall)(void);
if (!visited) {
visited++;
printk(version);
if (ARCH_SUN4C_SUN4)
printk(str_sun4c);
else {
printk(str_srmmu, srmmu_name);
if (sparc_cpu_model == sun4d)
printk(str_iounit);
else
printk(str_iommu);
}
}
for (p = ___btfixup_start; p < ___btfixup_end; ) {
count = p[2];
q = p + 3;
switch (type = *(unsigned char *)p) {
case 'f':
count = p[3];
q = p + 4;
if (((p[0] & 1) || p[1])
&& ((p[1] & 3) || (unsigned *)(p[1]) < _stext || (unsigned *)(p[1]) >= _end)) {
prom_printf(wrong_f, p, p[1]);
prom_halt();
}
break;
case 'b':
if (p[1] < (unsigned long)__init_begin || p[1] >= (unsigned long)__init_text_end || (p[1] & 3)) {
prom_printf(wrong_b, p, p[1]);
prom_halt();
}
break;
case 's':
if (p[1] + 0x1000 >= 0x2000) {
prom_printf(wrong_s, p, p[1]);
prom_halt();
}
break;
case 'h':
if (p[1] & 0x3ff) {
prom_printf(wrong_h, p, p[1]);
prom_halt();
}
break;
case 'a':
if (p[1] + 0x1000 >= 0x2000 && (p[1] & 0x3ff)) {
prom_printf(wrong_a, p, p[1]);
prom_halt();
}
break;
}
if (p[0] & 1) {
p[0] &= ~1;
while (count) {
fmangled = 0;
addr = (unsigned *)*q;
if (addr < _stext || addr >= _end) {
prom_printf(wrong, type, p);
prom_halt();
}
insn = *addr;
#ifdef BTFIXUP_OPTIMIZE_OTHER
if (type != 'f' && q[1]) {
insn = *(unsigned int *)q[1];
if (!insn || insn == 1)
insn = *addr;
else
fmangled = 1;
}
#endif
switch (type) {
case 'f': /* CALL */
if (addr >= __start___ksymtab && addr < __stop___ksymtab) {
*addr = p[1];
break;
} else if (!q[1]) {
if ((insn & 0xc1c00000) == 0x01000000) { /* SETHI */
*addr = (insn & 0xffc00000) | (p[1] >> 10); break;
} else if ((insn & 0xc1f82000) == 0x80102000) { /* OR X, %LO(i), Y */
*addr = (insn & 0xffffe000) | (p[1] & 0x3ff); break;
} else if ((insn & 0xc0000000) != 0x40000000) { /* !CALL */
bad_f:
prom_printf(insn_f, p, addr, insn, addr[1]);
prom_halt();
}
} else if (q[1] != 1)
addr[1] = q[1];
if (p[2] == BTFIXUPCALL_NORM) {
norm_f:
*addr = 0x40000000 | ((p[1] - (unsigned)addr) >> 2);
q[1] = 0;
break;
}
#ifndef BTFIXUP_OPTIMIZE_NOP
goto norm_f;
#else
if (!(addr[1] & 0x80000000)) {
if ((addr[1] & 0xc1c00000) != 0x01000000) /* !SETHI */
goto bad_f; /* CALL, Bicc, FBfcc, CBccc are weird in delay slot, aren't they? */
} else {
if ((addr[1] & 0x01800000) == 0x01800000) {
if ((addr[1] & 0x01f80000) == 0x01e80000) {
/* RESTORE */
goto norm_f; /* It is dangerous to patch that */
}
goto bad_f;
}
if ((addr[1] & 0xffffe003) == 0x9e03e000) {
/* ADD %O7, XX, %o7 */
int displac = (addr[1] << 19);
displac = (displac >> 21) + 2;
*addr = (0x10800000) + (displac & 0x3fffff);
q[1] = addr[1];
addr[1] = p[2];
break;
}
if ((addr[1] & 0x201f) == 0x200f || (addr[1] & 0x7c000) == 0x3c000)
goto norm_f; /* Someone is playing bad tricks with us: rs1 or rs2 is o7 */
if ((addr[1] & 0x3e000000) == 0x1e000000)
goto norm_f; /* rd is %o7. We'd better take care. */
}
if (p[2] == BTFIXUPCALL_NOP) {
*addr = 0x01000000;
q[1] = 1;
break;
}
#ifndef BTFIXUP_OPTIMIZE_OTHER
goto norm_f;
#else
if (addr[1] == 0x01000000) { /* NOP in the delay slot */
q[1] = addr[1];
*addr = p[2];
break;
}
if ((addr[1] & 0xc0000000) != 0xc0000000) {
/* Not a memory operation */
if ((addr[1] & 0x30000000) == 0x10000000) {
/* Ok, non-memory op with rd %oX */
if ((addr[1] & 0x3e000000) == 0x1c000000)
goto bad_f; /* Aiee. Someone is playing strange %sp tricks */
if ((addr[1] & 0x3e000000) > 0x12000000 ||
((addr[1] & 0x3e000000) == 0x12000000 &&
p[2] != BTFIXUPCALL_STO1O0 && p[2] != BTFIXUPCALL_SWAPO0O1) ||
((p[2] & 0xffffe000) == BTFIXUPCALL_RETINT(0))) {
/* Nobody uses the result. We can nop it out. */
*addr = p[2];
q[1] = addr[1];
addr[1] = 0x01000000;
break;
}
if ((addr[1] & 0xf1ffffe0) == 0x90100000) {
/* MOV %reg, %Ox */
if ((addr[1] & 0x3e000000) == 0x10000000 &&
(p[2] & 0x7c000) == 0x20000) {
/* Ok, it is call xx; mov reg, %o0 and call optimizes
to doing something on %o0. Patch the patch. */
*addr = (p[2] & ~0x7c000) | ((addr[1] & 0x1f) << 14);
q[1] = addr[1];
addr[1] = 0x01000000;
break;
}
if ((addr[1] & 0x3e000000) == 0x12000000 &&
p[2] == BTFIXUPCALL_STO1O0) {
*addr = (p[2] & ~0x3e000000) | ((addr[1] & 0x1f) << 25);
q[1] = addr[1];
addr[1] = 0x01000000;
break;
}
}
}
}
*addr = addr[1];
q[1] = addr[1];
addr[1] = p[2];
break;
#endif /* BTFIXUP_OPTIMIZE_OTHER */
#endif /* BTFIXUP_OPTIMIZE_NOP */
case 'b': /* BLACKBOX */
/* Has to be sethi i, xx */
if ((insn & 0xc1c00000) != 0x01000000) {
prom_printf(insn_b, p, addr, insn);
prom_halt();
} else {
void (*do_fixup)(unsigned *);
do_fixup = (void (*)(unsigned *))p[1];
do_fixup(addr);
}
break;
case 's': /* SIMM13 */
/* Has to be or %g0, i, xx */
if ((insn & 0xc1ffe000) != 0x80102000) {
prom_printf(insn_s, p, addr, insn);
prom_halt();
}
set_addr(addr, q[1], fmangled, (insn & 0xffffe000) | (p[1] & 0x1fff));
break;
case 'h': /* SETHI */
/* Has to be sethi i, xx */
if ((insn & 0xc1c00000) != 0x01000000) {
prom_printf(insn_h, p, addr, insn);
prom_halt();
}
set_addr(addr, q[1], fmangled, (insn & 0xffc00000) | (p[1] >> 10));
break;
case 'a': /* HALF */
/* Has to be sethi i, xx or or %g0, i, xx */
if ((insn & 0xc1c00000) != 0x01000000 &&
(insn & 0xc1ffe000) != 0x80102000) {
prom_printf(insn_a, p, addr, insn);
prom_halt();
}
if (p[1] & 0x3ff)
set_addr(addr, q[1], fmangled,
(insn & 0x3e000000) | 0x80102000 | (p[1] & 0x1fff));
else
set_addr(addr, q[1], fmangled,
(insn & 0x3e000000) | 0x01000000 | (p[1] >> 10));
break;
case 'i': /* INT */
if ((insn & 0xc1c00000) == 0x01000000) /* %HI */
set_addr(addr, q[1], fmangled, (insn & 0xffc00000) | (p[1] >> 10));
else if ((insn & 0x80002000) == 0x80002000 &&
(insn & 0x01800000) != 0x01800000) /* %LO */
set_addr(addr, q[1], fmangled, (insn & 0xffffe000) | (p[1] & 0x3ff));
else {
prom_printf(insn_i, p, addr, insn);
prom_halt();
}
break;
}
count -= 2;
q += 2;
}
} else
p = q + count;
}
#ifdef CONFIG_SMP
flush_cacheall = (void (*)(void))BTFIXUPVAL_CALL(local_flush_cache_all);
#else
flush_cacheall = (void (*)(void))BTFIXUPVAL_CALL(flush_cache_all);
#endif
if (!flush_cacheall) {
prom_printf(fca_und);
prom_halt();
}
(*flush_cacheall)();
}

77
arch/sparc/mm/extable.c Normal file
View File

@@ -0,0 +1,77 @@
/*
* linux/arch/sparc/mm/extable.c
*/
#include <linux/config.h>
#include <linux/module.h>
#include <asm/uaccess.h>
void sort_extable(struct exception_table_entry *start,
struct exception_table_entry *finish)
{
}
/* Caller knows they are in a range if ret->fixup == 0 */
const struct exception_table_entry *
search_extable(const struct exception_table_entry *start,
const struct exception_table_entry *last,
unsigned long value)
{
const struct exception_table_entry *walk;
/* Single insn entries are encoded as:
* word 1: insn address
* word 2: fixup code address
*
* Range entries are encoded as:
* word 1: first insn address
* word 2: 0
* word 3: last insn address + 4 bytes
* word 4: fixup code address
*
* See asm/uaccess.h for more details.
*/
/* 1. Try to find an exact match. */
for (walk = start; walk <= last; walk++) {
if (walk->fixup == 0) {
/* A range entry, skip both parts. */
walk++;
continue;
}
if (walk->insn == value)
return walk;
}
/* 2. Try to find a range match. */
for (walk = start; walk <= (last - 1); walk++) {
if (walk->fixup)
continue;
if (walk[0].insn <= value && walk[1].insn > value)
return walk;
walk++;
}
return NULL;
}
/* Special extable search, which handles ranges. Returns fixup */
unsigned long search_extables_range(unsigned long addr, unsigned long *g2)
{
const struct exception_table_entry *entry;
entry = search_exception_tables(addr);
if (!entry)
return 0;
/* Inside range? Fix g2 and return correct fixup */
if (!entry->fixup) {
*g2 = (addr - entry->insn) / 4;
return (entry + 1)->fixup;
}
return entry->fixup;
}

596
arch/sparc/mm/fault.c Normal file
View File

@@ -0,0 +1,596 @@
/* $Id: fault.c,v 1.122 2001/11/17 07:19:26 davem Exp $
* fault.c: Page fault handlers for the Sparc.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <asm/head.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/memreg.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/smp.h>
#include <asm/traps.h>
#include <asm/kdebug.h>
#include <asm/uaccess.h>
#define ELEMENTS(arr) (sizeof (arr)/sizeof (arr[0]))
extern int prom_node_root;
/* At boot time we determine these two values necessary for setting
* up the segment maps and page table entries (pte's).
*/
int num_segmaps, num_contexts;
int invalid_segment;
/* various Virtual Address Cache parameters we find at boot time... */
int vac_size, vac_linesize, vac_do_hw_vac_flushes;
int vac_entries_per_context, vac_entries_per_segment;
int vac_entries_per_page;
/* Nice, simple, prom library does all the sweating for us. ;) */
int prom_probe_memory (void)
{
register struct linux_mlist_v0 *mlist;
register unsigned long bytes, base_paddr, tally;
register int i;
i = 0;
mlist= *prom_meminfo()->v0_available;
bytes = tally = mlist->num_bytes;
base_paddr = (unsigned long) mlist->start_adr;
sp_banks[0].base_addr = base_paddr;
sp_banks[0].num_bytes = bytes;
while (mlist->theres_more != (void *) 0){
i++;
mlist = mlist->theres_more;
bytes = mlist->num_bytes;
tally += bytes;
if (i > SPARC_PHYS_BANKS-1) {
printk ("The machine has more banks than "
"this kernel can support\n"
"Increase the SPARC_PHYS_BANKS "
"setting (currently %d)\n",
SPARC_PHYS_BANKS);
i = SPARC_PHYS_BANKS-1;
break;
}
sp_banks[i].base_addr = (unsigned long) mlist->start_adr;
sp_banks[i].num_bytes = mlist->num_bytes;
}
i++;
sp_banks[i].base_addr = 0xdeadbeef;
sp_banks[i].num_bytes = 0;
/* Now mask all bank sizes on a page boundary, it is all we can
* use anyways.
*/
for(i=0; sp_banks[i].num_bytes != 0; i++)
sp_banks[i].num_bytes &= PAGE_MASK;
return tally;
}
/* Traverse the memory lists in the prom to see how much physical we
* have.
*/
unsigned long
probe_memory(void)
{
int total;
total = prom_probe_memory();
/* Oh man, much nicer, keep the dirt in promlib. */
return total;
}
extern void sun4c_complete_all_stores(void);
/* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
unsigned long svaddr, unsigned long aerr,
unsigned long avaddr)
{
sun4c_complete_all_stores();
printk("FAULT: NMI received\n");
printk("SREGS: Synchronous Error %08lx\n", serr);
printk(" Synchronous Vaddr %08lx\n", svaddr);
printk(" Asynchronous Error %08lx\n", aerr);
printk(" Asynchronous Vaddr %08lx\n", avaddr);
if (sun4c_memerr_reg)
printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
printk("REGISTER DUMP:\n");
show_regs(regs);
prom_halt();
}
static void unhandled_fault(unsigned long, struct task_struct *,
struct pt_regs *) __attribute__ ((noreturn));
static void unhandled_fault(unsigned long address, struct task_struct *tsk,
struct pt_regs *regs)
{
if((unsigned long) address < PAGE_SIZE) {
printk(KERN_ALERT
"Unable to handle kernel NULL pointer dereference\n");
} else {
printk(KERN_ALERT "Unable to handle kernel paging request "
"at virtual address %08lx\n", address);
}
printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
(tsk->mm ? tsk->mm->context : tsk->active_mm->context));
printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
(tsk->mm ? (unsigned long) tsk->mm->pgd :
(unsigned long) tsk->active_mm->pgd));
die_if_kernel("Oops", regs);
}
asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
unsigned long address)
{
struct pt_regs regs;
unsigned long g2;
unsigned int insn;
int i;
i = search_extables_range(ret_pc, &g2);
switch (i) {
case 3:
/* load & store will be handled by fixup */
return 3;
case 1:
/* store will be handled by fixup, load will bump out */
/* for _to_ macros */
insn = *((unsigned int *) pc);
if ((insn >> 21) & 1)
return 1;
break;
case 2:
/* load will be handled by fixup, store will bump out */
/* for _from_ macros */
insn = *((unsigned int *) pc);
if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
return 2;
break;
default:
break;
};
memset(&regs, 0, sizeof (regs));
regs.pc = pc;
regs.npc = pc + 4;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
"nop\n\t"
"nop\n\t"
"nop\n" : "=r" (regs.psr));
unhandled_fault(address, current, &regs);
/* Not reached */
return 0;
}
extern unsigned long safe_compute_effective_address(struct pt_regs *,
unsigned int);
static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
{
unsigned int insn;
if (text_fault)
return regs->pc;
if (regs->psr & PSR_PS) {
insn = *(unsigned int *) regs->pc;
} else {
__get_user(insn, (unsigned int *) regs->pc);
}
return safe_compute_effective_address(regs, insn);
}
asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
unsigned long address)
{
struct vm_area_struct *vma;
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
unsigned int fixup;
unsigned long g2;
siginfo_t info;
int from_user = !(regs->psr & PSR_PS);
if(text_fault)
address = regs->pc;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*/
if (!ARCH_SUN4C_SUN4 && address >= TASK_SIZE)
goto vmalloc_fault;
info.si_code = SEGV_MAPERR;
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (in_atomic() || !mm)
goto no_context;
down_read(&mm->mmap_sem);
/*
* The kernel referencing a bad kernel pointer can lock up
* a sun4c machine completely, so we must attempt recovery.
*/
if(!from_user && address >= PAGE_OFFSET)
goto bad_area;
vma = find_vma(mm, address);
if(!vma)
goto bad_area;
if(vma->vm_start <= address)
goto good_area;
if(!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if(expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
info.si_code = SEGV_ACCERR;
if(write) {
if(!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
/* Allow reads even for write-only mappings */
if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
switch (handle_mm_fault(mm, vma, address, write)) {
case VM_FAULT_SIGBUS:
goto do_sigbus;
case VM_FAULT_OOM:
goto out_of_memory;
case VM_FAULT_MAJOR:
current->maj_flt++;
break;
case VM_FAULT_MINOR:
default:
current->min_flt++;
break;
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if(from_user) {
#if 0
printk("Fault whee %s [%d]: segfaults at %08lx pc=%08lx\n",
tsk->comm, tsk->pid, address, regs->pc);
#endif
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code set above to make clear whether
this was a SEGV_MAPERR or SEGV_ACCERR fault. */
info.si_addr = (void __user *)compute_si_addr(regs, text_fault);
info.si_trapno = 0;
force_sig_info (SIGSEGV, &info, tsk);
return;
}
/* Is this in ex_table? */
no_context:
g2 = regs->u_regs[UREG_G2];
if (!from_user && (fixup = search_extables_range(regs->pc, &g2))) {
if (fixup > 10) { /* Values below are reserved for other things */
extern const unsigned __memset_start[];
extern const unsigned __memset_end[];
extern const unsigned __csum_partial_copy_start[];
extern const unsigned __csum_partial_copy_end[];
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
regs->pc, fixup, g2);
#endif
if ((regs->pc >= (unsigned long)__memset_start &&
regs->pc < (unsigned long)__memset_end) ||
(regs->pc >= (unsigned long)__csum_partial_copy_start &&
regs->pc < (unsigned long)__csum_partial_copy_end)) {
regs->u_regs[UREG_I4] = address;
regs->u_regs[UREG_I5] = regs->pc;
}
regs->u_regs[UREG_G2] = g2;
regs->pc = fixup;
regs->npc = regs->pc + 4;
return;
}
}
unhandled_fault (address, tsk, regs);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
printk("VM: killing process %s\n", tsk->comm);
if (from_user)
do_exit(SIGKILL);
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *) compute_si_addr(regs, text_fault);
info.si_trapno = 0;
force_sig_info (SIGBUS, &info, tsk);
if (!from_user)
goto no_context;
vmalloc_fault:
{
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*/
int offset = pgd_index(address);
pgd_t *pgd, *pgd_k;
pmd_t *pmd, *pmd_k;
pgd = tsk->active_mm->pgd + offset;
pgd_k = init_mm.pgd + offset;
if (!pgd_present(*pgd)) {
if (!pgd_present(*pgd_k))
goto bad_area_nosemaphore;
pgd_val(*pgd) = pgd_val(*pgd_k);
return;
}
pmd = pmd_offset(pgd, address);
pmd_k = pmd_offset(pgd_k, address);
if (pmd_present(*pmd) || !pmd_present(*pmd_k))
goto bad_area_nosemaphore;
*pmd = *pmd_k;
return;
}
}
asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
unsigned long address)
{
extern void sun4c_update_mmu_cache(struct vm_area_struct *,
unsigned long,pte_t);
extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
pgd_t *pgdp;
pte_t *ptep;
if (text_fault) {
address = regs->pc;
} else if (!write &&
!(regs->psr & PSR_PS)) {
unsigned int insn, __user *ip;
ip = (unsigned int __user *)regs->pc;
if (!get_user(insn, ip)) {
if ((insn & 0xc1680000) == 0xc0680000)
write = 1;
}
}
if (!mm) {
/* We are oopsing. */
do_sparc_fault(regs, text_fault, write, address);
BUG(); /* P3 Oops already, you bitch */
}
pgdp = pgd_offset(mm, address);
ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
if (pgd_val(*pgdp)) {
if (write) {
if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
== (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
unsigned long flags;
*ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
_SUN4C_PAGE_MODIFIED |
_SUN4C_PAGE_VALID |
_SUN4C_PAGE_DIRTY);
local_irq_save(flags);
if (sun4c_get_segmap(address) != invalid_segment) {
sun4c_put_pte(address, pte_val(*ptep));
local_irq_restore(flags);
return;
}
local_irq_restore(flags);
}
} else {
if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
== (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
unsigned long flags;
*ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
_SUN4C_PAGE_VALID);
local_irq_save(flags);
if (sun4c_get_segmap(address) != invalid_segment) {
sun4c_put_pte(address, pte_val(*ptep));
local_irq_restore(flags);
return;
}
local_irq_restore(flags);
}
}
}
/* This conditional is 'interesting'. */
if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
&& (pte_val(*ptep) & _SUN4C_PAGE_VALID))
/* Note: It is safe to not grab the MMAP semaphore here because
* we know that update_mmu_cache() will not sleep for
* any reason (at least not in the current implementation)
* and therefore there is no danger of another thread getting
* on the CPU and doing a shrink_mmap() on this vma.
*/
sun4c_update_mmu_cache (find_vma(current->mm, address), address,
*ptep);
else
do_sparc_fault(regs, text_fault, write, address);
}
/* This always deals with user addresses. */
inline void force_user_fault(unsigned long address, int write)
{
struct vm_area_struct *vma;
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
siginfo_t info;
info.si_code = SEGV_MAPERR;
#if 0
printk("wf<pid=%d,wr=%d,addr=%08lx>\n",
tsk->pid, write, address);
#endif
down_read(&mm->mmap_sem);
vma = find_vma(mm, address);
if(!vma)
goto bad_area;
if(vma->vm_start <= address)
goto good_area;
if(!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if(expand_stack(vma, address))
goto bad_area;
good_area:
info.si_code = SEGV_ACCERR;
if(write) {
if(!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
switch (handle_mm_fault(mm, vma, address, write)) {
case VM_FAULT_SIGBUS:
case VM_FAULT_OOM:
goto do_sigbus;
}
up_read(&mm->mmap_sem);
return;
bad_area:
up_read(&mm->mmap_sem);
#if 0
printk("Window whee %s [%d]: segfaults at %08lx\n",
tsk->comm, tsk->pid, address);
#endif
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code set above to make clear whether
this was a SEGV_MAPERR or SEGV_ACCERR fault. */
info.si_addr = (void __user *) address;
info.si_trapno = 0;
force_sig_info (SIGSEGV, &info, tsk);
return;
do_sigbus:
up_read(&mm->mmap_sem);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *) address;
info.si_trapno = 0;
force_sig_info (SIGBUS, &info, tsk);
}
void window_overflow_fault(void)
{
unsigned long sp;
sp = current_thread_info()->rwbuf_stkptrs[0];
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 1);
force_user_fault(sp, 1);
}
void window_underflow_fault(unsigned long sp)
{
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 0);
force_user_fault(sp, 0);
}
void window_ret_fault(struct pt_regs *regs)
{
unsigned long sp;
sp = regs->u_regs[UREG_FP];
if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
force_user_fault(sp + 0x38, 0);
force_user_fault(sp, 0);
}

154
arch/sparc/mm/generic.c Normal file
View File

@@ -0,0 +1,154 @@
/* $Id: generic.c,v 1.14 2001/12/21 04:56:15 davem Exp $
* generic.c: Generic Sparc mm routines that are not dependent upon
* MMU type but are Sparc specific.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
static inline void forget_pte(pte_t page)
{
#if 0 /* old 2.4 code */
if (pte_none(page))
return;
if (pte_present(page)) {
unsigned long pfn = pte_pfn(page);
struct page *ptpage;
if (!pfn_valid(pfn))
return;
ptpage = pfn_to_page(pfn);
if (PageReserved(ptpage))
return;
page_cache_release(ptpage);
return;
}
swap_free(pte_to_swp_entry(page));
#else
if (!pte_none(page)) {
printk("forget_pte: old mapping existed!\n");
BUG();
}
#endif
}
/* Remap IO memory, the same way as remap_pfn_range(), but use
* the obio memory space.
*
* They use a pgprot that sets PAGE_IO and does not check the
* mem_map table as this is independent of normal memory.
*/
static inline void io_remap_pte_range(struct mm_struct *mm, pte_t * pte, unsigned long address, unsigned long size,
unsigned long offset, pgprot_t prot, int space)
{
unsigned long end;
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
pte_t oldpage = *pte;
pte_clear(mm, address, pte);
set_pte(pte, mk_pte_io(offset, prot, space));
forget_pte(oldpage);
address += PAGE_SIZE;
offset += PAGE_SIZE;
pte++;
} while (address < end);
}
static inline int io_remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
unsigned long offset, pgprot_t prot, int space)
{
unsigned long end;
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
offset -= address;
do {
pte_t * pte = pte_alloc_map(mm, pmd, address);
if (!pte)
return -ENOMEM;
io_remap_pte_range(mm, pte, address, end - address, address + offset, prot, space);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address < end);
return 0;
}
int io_remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long offset, unsigned long size, pgprot_t prot, int space)
{
int error = 0;
pgd_t * dir;
unsigned long beg = from;
unsigned long end = from + size;
struct mm_struct *mm = vma->vm_mm;
prot = __pgprot(pg_iobits);
offset -= from;
dir = pgd_offset(mm, from);
flush_cache_range(vma, beg, end);
spin_lock(&mm->page_table_lock);
while (from < end) {
pmd_t *pmd = pmd_alloc(current->mm, dir, from);
error = -ENOMEM;
if (!pmd)
break;
error = io_remap_pmd_range(mm, pmd, from, end - from, offset + from, prot, space);
if (error)
break;
from = (from + PGDIR_SIZE) & PGDIR_MASK;
dir++;
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, beg, end);
return error;
}
int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
int error = 0;
pgd_t * dir;
unsigned long beg = from;
unsigned long end = from + size;
struct mm_struct *mm = vma->vm_mm;
int space = GET_IOSPACE(pfn);
unsigned long offset = GET_PFN(pfn) << PAGE_SHIFT;
prot = __pgprot(pg_iobits);
offset -= from;
dir = pgd_offset(mm, from);
flush_cache_range(vma, beg, end);
spin_lock(&mm->page_table_lock);
while (from < end) {
pmd_t *pmd = pmd_alloc(current->mm, dir, from);
error = -ENOMEM;
if (!pmd)
break;
error = io_remap_pmd_range(mm, pmd, from, end - from, offset + from, prot, space);
if (error)
break;
from = (from + PGDIR_SIZE) & PGDIR_MASK;
dir++;
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, beg, end);
return error;
}

120
arch/sparc/mm/highmem.c Normal file
View File

@@ -0,0 +1,120 @@
/*
* highmem.c: virtual kernel memory mappings for high memory
*
* Provides kernel-static versions of atomic kmap functions originally
* found as inlines in include/asm-sparc/highmem.h. These became
* needed as kmap_atomic() and kunmap_atomic() started getting
* called from within modules.
* -- Tomas Szepe <szepe@pinerecords.com>, September 2002
*
* But kmap_atomic() and kunmap_atomic() cannot be inlined in
* modules because they are loaded with btfixup-ped functions.
*/
/*
* The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap
* gives a more generic (and caching) interface. But kmap_atomic can
* be used in IRQ contexts, so in some (very limited) cases we need it.
*
* XXX This is an old text. Actually, it's good to use atomic kmaps,
* provided you remember that they are atomic and not try to sleep
* with a kmap taken, much like a spinlock. Non-atomic kmaps are
* shared by CPUs, and so precious, and establishing them requires IPI.
* Atomic kmaps are lightweight and we may have NCPUS more of them.
*/
#include <linux/mm.h>
#include <linux/highmem.h>
#include <asm/pgalloc.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/fixmap.h>
void *kmap_atomic(struct page *page, enum km_type type)
{
unsigned long idx;
unsigned long vaddr;
/* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
inc_preempt_count();
if (!PageHighMem(page))
return page_address(page);
idx = type + KM_TYPE_NR*smp_processor_id();
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
/* XXX Fix - Anton */
#if 0
__flush_cache_one(vaddr);
#else
flush_cache_all();
#endif
#ifdef CONFIG_DEBUG_HIGHMEM
BUG_ON(!pte_none(*(kmap_pte-idx)));
#endif
set_pte(kmap_pte-idx, mk_pte(page, kmap_prot));
/* XXX Fix - Anton */
#if 0
__flush_tlb_one(vaddr);
#else
flush_tlb_all();
#endif
return (void*) vaddr;
}
void kunmap_atomic(void *kvaddr, enum km_type type)
{
#ifdef CONFIG_DEBUG_HIGHMEM
unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
unsigned long idx = type + KM_TYPE_NR*smp_processor_id();
if (vaddr < FIXADDR_START) { // FIXME
dec_preempt_count();
preempt_check_resched();
return;
}
BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN+idx));
/* XXX Fix - Anton */
#if 0
__flush_cache_one(vaddr);
#else
flush_cache_all();
#endif
/*
* force other mappings to Oops if they'll try to access
* this pte without first remap it
*/
pte_clear(&init_mm, vaddr, kmap_pte-idx);
/* XXX Fix - Anton */
#if 0
__flush_tlb_one(vaddr);
#else
flush_tlb_all();
#endif
#endif
dec_preempt_count();
preempt_check_resched();
}
/* We may be fed a pagetable here by ptep_to_xxx and others. */
struct page *kmap_atomic_to_page(void *ptr)
{
unsigned long idx, vaddr = (unsigned long)ptr;
pte_t *pte;
if (vaddr < SRMMU_NOCACHE_VADDR)
return virt_to_page(ptr);
if (vaddr < PKMAP_BASE)
return pfn_to_page(__nocache_pa(vaddr) >> PAGE_SHIFT);
BUG_ON(vaddr < FIXADDR_START);
BUG_ON(vaddr > FIXADDR_TOP);
idx = virt_to_fix(vaddr);
pte = kmap_pte - (idx - FIX_KMAP_BEGIN);
return pte_page(*pte);
}

413
arch/sparc/mm/hypersparc.S Normal file
View File

@@ -0,0 +1,413 @@
/* $Id: hypersparc.S,v 1.18 2001/12/21 04:56:15 davem Exp $
* hypersparc.S: High speed Hypersparc mmu/cache operations.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/ptrace.h>
#include <asm/psr.h>
#include <asm/asm_offsets.h>
#include <asm/asi.h>
#include <asm/page.h>
#include <asm/pgtsrmmu.h>
#include <linux/config.h>
#include <linux/init.h>
.text
.align 4
.globl hypersparc_flush_cache_all, hypersparc_flush_cache_mm
.globl hypersparc_flush_cache_range, hypersparc_flush_cache_page
.globl hypersparc_flush_page_to_ram
.globl hypersparc_flush_page_for_dma, hypersparc_flush_sig_insns
.globl hypersparc_flush_tlb_all, hypersparc_flush_tlb_mm
.globl hypersparc_flush_tlb_range, hypersparc_flush_tlb_page
hypersparc_flush_cache_all:
WINDOW_FLUSH(%g4, %g5)
sethi %hi(vac_cache_size), %g4
ld [%g4 + %lo(vac_cache_size)], %g5
sethi %hi(vac_line_size), %g1
ld [%g1 + %lo(vac_line_size)], %g2
1:
subcc %g5, %g2, %g5 ! hyper_flush_unconditional_combined
bne 1b
sta %g0, [%g5] ASI_M_FLUSH_CTX
retl
sta %g0, [%g0] ASI_M_FLUSH_IWHOLE ! hyper_flush_whole_icache
/* We expand the window flush to get maximum performance. */
hypersparc_flush_cache_mm:
#ifndef CONFIG_SMP
ld [%o0 + AOFF_mm_context], %g1
cmp %g1, -1
be hypersparc_flush_cache_mm_out
#endif
WINDOW_FLUSH(%g4, %g5)
sethi %hi(vac_line_size), %g1
ld [%g1 + %lo(vac_line_size)], %o1
sethi %hi(vac_cache_size), %g2
ld [%g2 + %lo(vac_cache_size)], %o0
add %o1, %o1, %g1
add %o1, %g1, %g2
add %o1, %g2, %g3
add %o1, %g3, %g4
add %o1, %g4, %g5
add %o1, %g5, %o4
add %o1, %o4, %o5
/* BLAMMO! */
1:
subcc %o0, %o5, %o0 ! hyper_flush_cache_user
sta %g0, [%o0 + %g0] ASI_M_FLUSH_USER
sta %g0, [%o0 + %o1] ASI_M_FLUSH_USER
sta %g0, [%o0 + %g1] ASI_M_FLUSH_USER
sta %g0, [%o0 + %g2] ASI_M_FLUSH_USER
sta %g0, [%o0 + %g3] ASI_M_FLUSH_USER
sta %g0, [%o0 + %g4] ASI_M_FLUSH_USER
sta %g0, [%o0 + %g5] ASI_M_FLUSH_USER
bne 1b
sta %g0, [%o0 + %o4] ASI_M_FLUSH_USER
hypersparc_flush_cache_mm_out:
retl
nop
/* The things we do for performance... */
hypersparc_flush_cache_range:
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
#ifndef CONFIG_SMP
ld [%o0 + AOFF_mm_context], %g1
cmp %g1, -1
be hypersparc_flush_cache_range_out
#endif
WINDOW_FLUSH(%g4, %g5)
sethi %hi(vac_line_size), %g1
ld [%g1 + %lo(vac_line_size)], %o4
sethi %hi(vac_cache_size), %g2
ld [%g2 + %lo(vac_cache_size)], %o3
/* Here comes the fun part... */
add %o2, (PAGE_SIZE - 1), %o2
andn %o1, (PAGE_SIZE - 1), %o1
add %o4, %o4, %o5
andn %o2, (PAGE_SIZE - 1), %o2
add %o4, %o5, %g1
sub %o2, %o1, %g4
add %o4, %g1, %g2
sll %o3, 2, %g5
add %o4, %g2, %g3
cmp %g4, %g5
add %o4, %g3, %g4
blu 0f
add %o4, %g4, %g5
add %o4, %g5, %g7
/* Flush entire user space, believe it or not this is quicker
* than page at a time flushings for range > (cache_size<<2).
*/
1:
subcc %o3, %g7, %o3
sta %g0, [%o3 + %g0] ASI_M_FLUSH_USER
sta %g0, [%o3 + %o4] ASI_M_FLUSH_USER
sta %g0, [%o3 + %o5] ASI_M_FLUSH_USER
sta %g0, [%o3 + %g1] ASI_M_FLUSH_USER
sta %g0, [%o3 + %g2] ASI_M_FLUSH_USER
sta %g0, [%o3 + %g3] ASI_M_FLUSH_USER
sta %g0, [%o3 + %g4] ASI_M_FLUSH_USER
bne 1b
sta %g0, [%o3 + %g5] ASI_M_FLUSH_USER
retl
nop
/* Below our threshold, flush one page at a time. */
0:
ld [%o0 + AOFF_mm_context], %o0
mov SRMMU_CTX_REG, %g7
lda [%g7] ASI_M_MMUREGS, %o3
sta %o0, [%g7] ASI_M_MMUREGS
add %o2, -PAGE_SIZE, %o0
1:
or %o0, 0x400, %g7
lda [%g7] ASI_M_FLUSH_PROBE, %g7
orcc %g7, 0, %g0
be,a 3f
mov %o0, %o2
add %o4, %g5, %g7
2:
sub %o2, %g7, %o2
sta %g0, [%o2 + %g0] ASI_M_FLUSH_PAGE
sta %g0, [%o2 + %o4] ASI_M_FLUSH_PAGE
sta %g0, [%o2 + %o5] ASI_M_FLUSH_PAGE
sta %g0, [%o2 + %g1] ASI_M_FLUSH_PAGE
sta %g0, [%o2 + %g2] ASI_M_FLUSH_PAGE
sta %g0, [%o2 + %g3] ASI_M_FLUSH_PAGE
andcc %o2, 0xffc, %g0
sta %g0, [%o2 + %g4] ASI_M_FLUSH_PAGE
bne 2b
sta %g0, [%o2 + %g5] ASI_M_FLUSH_PAGE
3:
cmp %o2, %o1
bne 1b
add %o2, -PAGE_SIZE, %o0
mov SRMMU_FAULT_STATUS, %g5
lda [%g5] ASI_M_MMUREGS, %g0
mov SRMMU_CTX_REG, %g7
sta %o3, [%g7] ASI_M_MMUREGS
hypersparc_flush_cache_range_out:
retl
nop
/* HyperSparc requires a valid mapping where we are about to flush
* in order to check for a physical tag match during the flush.
*/
/* Verified, my ass... */
hypersparc_flush_cache_page:
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
ld [%o0 + AOFF_mm_context], %g2
#ifndef CONFIG_SMP
cmp %g2, -1
be hypersparc_flush_cache_page_out
#endif
WINDOW_FLUSH(%g4, %g5)
sethi %hi(vac_line_size), %g1
ld [%g1 + %lo(vac_line_size)], %o4
mov SRMMU_CTX_REG, %o3
andn %o1, (PAGE_SIZE - 1), %o1
lda [%o3] ASI_M_MMUREGS, %o2
sta %g2, [%o3] ASI_M_MMUREGS
or %o1, 0x400, %o5
lda [%o5] ASI_M_FLUSH_PROBE, %g1
orcc %g0, %g1, %g0
be 2f
add %o4, %o4, %o5
sub %o1, -PAGE_SIZE, %o1
add %o4, %o5, %g1
add %o4, %g1, %g2
add %o4, %g2, %g3
add %o4, %g3, %g4
add %o4, %g4, %g5
add %o4, %g5, %g7
/* BLAMMO! */
1:
sub %o1, %g7, %o1
sta %g0, [%o1 + %g0] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o4] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o5] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g1] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g2] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g3] ASI_M_FLUSH_PAGE
andcc %o1, 0xffc, %g0
sta %g0, [%o1 + %g4] ASI_M_FLUSH_PAGE
bne 1b
sta %g0, [%o1 + %g5] ASI_M_FLUSH_PAGE
2:
mov SRMMU_FAULT_STATUS, %g7
mov SRMMU_CTX_REG, %g4
lda [%g7] ASI_M_MMUREGS, %g0
sta %o2, [%g4] ASI_M_MMUREGS
hypersparc_flush_cache_page_out:
retl
nop
hypersparc_flush_sig_insns:
flush %o1
retl
flush %o1 + 4
/* HyperSparc is copy-back. */
hypersparc_flush_page_to_ram:
sethi %hi(vac_line_size), %g1
ld [%g1 + %lo(vac_line_size)], %o4
andn %o0, (PAGE_SIZE - 1), %o0
add %o4, %o4, %o5
or %o0, 0x400, %g7
lda [%g7] ASI_M_FLUSH_PROBE, %g5
add %o4, %o5, %g1
orcc %g5, 0, %g0
be 2f
add %o4, %g1, %g2
add %o4, %g2, %g3
sub %o0, -PAGE_SIZE, %o0
add %o4, %g3, %g4
add %o4, %g4, %g5
add %o4, %g5, %g7
/* BLAMMO! */
1:
sub %o0, %g7, %o0
sta %g0, [%o0 + %g0] ASI_M_FLUSH_PAGE
sta %g0, [%o0 + %o4] ASI_M_FLUSH_PAGE
sta %g0, [%o0 + %o5] ASI_M_FLUSH_PAGE
sta %g0, [%o0 + %g1] ASI_M_FLUSH_PAGE
sta %g0, [%o0 + %g2] ASI_M_FLUSH_PAGE
sta %g0, [%o0 + %g3] ASI_M_FLUSH_PAGE
andcc %o0, 0xffc, %g0
sta %g0, [%o0 + %g4] ASI_M_FLUSH_PAGE
bne 1b
sta %g0, [%o0 + %g5] ASI_M_FLUSH_PAGE
2:
mov SRMMU_FAULT_STATUS, %g1
retl
lda [%g1] ASI_M_MMUREGS, %g0
/* HyperSparc is IO cache coherent. */
hypersparc_flush_page_for_dma:
retl
nop
/* It was noted that at boot time a TLB flush all in a delay slot
* can deliver an illegal instruction to the processor if the timing
* is just right...
*/
hypersparc_flush_tlb_all:
mov 0x400, %g1
sta %g0, [%g1] ASI_M_FLUSH_PROBE
retl
nop
hypersparc_flush_tlb_mm:
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o1
lda [%g1] ASI_M_MMUREGS, %g5
#ifndef CONFIG_SMP
cmp %o1, -1
be hypersparc_flush_tlb_mm_out
#endif
mov 0x300, %g2
sta %o1, [%g1] ASI_M_MMUREGS
sta %g0, [%g2] ASI_M_FLUSH_PROBE
hypersparc_flush_tlb_mm_out:
retl
sta %g5, [%g1] ASI_M_MMUREGS
hypersparc_flush_tlb_range:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
lda [%g1] ASI_M_MMUREGS, %g5
#ifndef CONFIG_SMP
cmp %o3, -1
be hypersparc_flush_tlb_range_out
#endif
sethi %hi(~((1 << SRMMU_PGDIR_SHIFT) - 1)), %o4
sta %o3, [%g1] ASI_M_MMUREGS
and %o1, %o4, %o1
add %o1, 0x200, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
1:
sub %o1, %o4, %o1
cmp %o1, %o2
blu,a 1b
sta %g0, [%o1] ASI_M_FLUSH_PROBE
hypersparc_flush_tlb_range_out:
retl
sta %g5, [%g1] ASI_M_MMUREGS
hypersparc_flush_tlb_page:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
andn %o1, (PAGE_SIZE - 1), %o1
#ifndef CONFIG_SMP
cmp %o3, -1
be hypersparc_flush_tlb_page_out
#endif
lda [%g1] ASI_M_MMUREGS, %g5
sta %o3, [%g1] ASI_M_MMUREGS
sta %g0, [%o1] ASI_M_FLUSH_PROBE
hypersparc_flush_tlb_page_out:
retl
sta %g5, [%g1] ASI_M_MMUREGS
__INIT
/* High speed page clear/copy. */
hypersparc_bzero_1page:
/* NOTE: This routine has to be shorter than 40insns --jj */
clr %g1
mov 32, %g2
mov 64, %g3
mov 96, %g4
mov 128, %g5
mov 160, %g7
mov 192, %o2
mov 224, %o3
mov 16, %o1
1:
stda %g0, [%o0 + %g0] ASI_M_BFILL
stda %g0, [%o0 + %g2] ASI_M_BFILL
stda %g0, [%o0 + %g3] ASI_M_BFILL
stda %g0, [%o0 + %g4] ASI_M_BFILL
stda %g0, [%o0 + %g5] ASI_M_BFILL
stda %g0, [%o0 + %g7] ASI_M_BFILL
stda %g0, [%o0 + %o2] ASI_M_BFILL
stda %g0, [%o0 + %o3] ASI_M_BFILL
subcc %o1, 1, %o1
bne 1b
add %o0, 256, %o0
retl
nop
hypersparc_copy_1page:
/* NOTE: This routine has to be shorter than 70insns --jj */
sub %o1, %o0, %o2 ! difference
mov 16, %g1
1:
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
add %o0, 32, %o0
sta %o0, [%o0 + %o2] ASI_M_BCOPY
subcc %g1, 1, %g1
bne 1b
add %o0, 32, %o0
retl
nop
.globl hypersparc_setup_blockops
hypersparc_setup_blockops:
sethi %hi(bzero_1page), %o0
or %o0, %lo(bzero_1page), %o0
sethi %hi(hypersparc_bzero_1page), %o1
or %o1, %lo(hypersparc_bzero_1page), %o1
sethi %hi(hypersparc_copy_1page), %o2
or %o2, %lo(hypersparc_copy_1page), %o2
ld [%o1], %o4
1:
add %o1, 4, %o1
st %o4, [%o0]
add %o0, 4, %o0
cmp %o1, %o2
bne 1b
ld [%o1], %o4
sethi %hi(__copy_1page), %o0
or %o0, %lo(__copy_1page), %o0
sethi %hi(hypersparc_setup_blockops), %o2
or %o2, %lo(hypersparc_setup_blockops), %o2
ld [%o1], %o4
1:
add %o1, 4, %o1
st %o4, [%o0]
add %o0, 4, %o0
cmp %o1, %o2
bne 1b
ld [%o1], %o4
sta %g0, [%g0] ASI_M_FLUSH_IWHOLE
retl
nop

515
arch/sparc/mm/init.c Normal file
View File

@@ -0,0 +1,515 @@
/* $Id: init.c,v 1.103 2001/11/19 19:03:08 davem Exp $
* linux/arch/sparc/mm/init.c
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/initrd.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/vac-ops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/vaddrs.h>
#include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */
#include <asm/tlb.h>
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
unsigned long *sparc_valid_addr_bitmap;
unsigned long phys_base;
unsigned long pfn_base;
unsigned long page_kernel;
struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];
unsigned long sparc_unmapped_base;
struct pgtable_cache_struct pgt_quicklists;
/* References to section boundaries */
extern char __init_begin, __init_end, _start, _end, etext , edata;
/* Initial ramdisk setup */
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
unsigned long highstart_pfn, highend_pfn;
pte_t *kmap_pte;
pgprot_t kmap_prot;
#define kmap_get_fixmap_pte(vaddr) \
pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
void __init kmap_init(void)
{
/* cache the first kmap pte */
kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);
}
void show_mem(void)
{
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", totalram_pages);
printk("%d free pages\n", nr_free_pages());
#if 0 /* undefined pgtable_cache_size, pgd_cache_size */
printk("%ld pages in page table cache\n",pgtable_cache_size);
#ifndef CONFIG_SMP
if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)
printk("%ld entries in page dir cache\n",pgd_cache_size);
#endif
#endif
}
void __init sparc_context_init(int numctx)
{
int ctx;
ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);
for(ctx = 0; ctx < numctx; ctx++) {
struct ctx_list *clist;
clist = (ctx_list_pool + ctx);
clist->ctx_number = ctx;
clist->ctx_mm = NULL;
}
ctx_free.next = ctx_free.prev = &ctx_free;
ctx_used.next = ctx_used.prev = &ctx_used;
for(ctx = 0; ctx < numctx; ctx++)
add_to_free_ctxlist(ctx_list_pool + ctx);
}
extern unsigned long cmdline_memory_size;
unsigned long last_valid_pfn;
unsigned long calc_highpages(void)
{
int i;
int nr = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
if (end_pfn <= max_low_pfn)
continue;
if (start_pfn < max_low_pfn)
start_pfn = max_low_pfn;
nr += end_pfn - start_pfn;
}
return nr;
}
unsigned long calc_max_low_pfn(void)
{
int i;
unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
unsigned long curr_pfn, last_pfn;
last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;
for (i = 1; sp_banks[i].num_bytes != 0; i++) {
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
if (curr_pfn >= tmp) {
if (last_pfn < tmp)
tmp = last_pfn;
break;
}
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
}
return tmp;
}
unsigned long __init bootmem_init(unsigned long *pages_avail)
{
unsigned long bootmap_size, start_pfn;
unsigned long end_of_phys_memory = 0UL;
unsigned long bootmap_pfn, bytes_avail, size;
int i;
bytes_avail = 0UL;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
end_of_phys_memory = sp_banks[i].base_addr +
sp_banks[i].num_bytes;
bytes_avail += sp_banks[i].num_bytes;
if (cmdline_memory_size) {
if (bytes_avail > cmdline_memory_size) {
unsigned long slack = bytes_avail - cmdline_memory_size;
bytes_avail -= slack;
end_of_phys_memory -= slack;
sp_banks[i].num_bytes -= slack;
if (sp_banks[i].num_bytes == 0) {
sp_banks[i].base_addr = 0xdeadbeef;
} else {
sp_banks[i+1].num_bytes = 0;
sp_banks[i+1].base_addr = 0xdeadbeef;
}
break;
}
}
}
/* Start with page aligned address of last symbol in kernel
* image.
*/
start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
/* Now shift down to get the real physical page frame number. */
start_pfn >>= PAGE_SHIFT;
bootmap_pfn = start_pfn;
max_pfn = end_of_phys_memory >> PAGE_SHIFT;
max_low_pfn = max_pfn;
highstart_pfn = highend_pfn = max_pfn;
if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
max_low_pfn = calc_max_low_pfn();
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
calc_highpages() >> (20 - PAGE_SHIFT));
}
#ifdef CONFIG_BLK_DEV_INITRD
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image) {
if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
sparc_ramdisk_image -= KERNBASE;
initrd_start = sparc_ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
}
if (initrd_start) {
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
}
}
#endif
/* Initialize the boot-time allocator. */
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
max_low_pfn);
/* Now register the available physical memory with the
* allocator.
*/
*pages_avail = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long curr_pfn, last_pfn;
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
if (curr_pfn >= max_low_pfn)
break;
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
/*
* .. finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
size = (last_pfn - curr_pfn) << PAGE_SHIFT;
*pages_avail += last_pfn - curr_pfn;
free_bootmem(sp_banks[i].base_addr, size);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
/* Reserve the initrd image area. */
size = initrd_end - initrd_start;
reserve_bootmem(initrd_start, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */
size = (start_pfn << PAGE_SHIFT) - phys_base;
reserve_bootmem(phys_base, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it
* in pages_avail because we will release that memory
* in free_all_bootmem.
*/
size = bootmap_size;
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
return max_pfn;
}
/*
* check_pgt_cache
*
* This is called at the end of unmapping of VMA (zap_page_range),
* to rescan the page cache for architecture specific things,
* presumably something like sun4/sun4c PMEGs. Most architectures
* define check_pgt_cache empty.
*
* We simply copy the 2.4 implementation for now.
*/
int pgt_cache_water[2] = { 25, 50 };
void check_pgt_cache(void)
{
do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
}
/*
* paging_init() sets up the page tables: We call the MMU specific
* init routine based upon the Sun model type on the Sparc.
*
*/
extern void sun4c_paging_init(void);
extern void srmmu_paging_init(void);
extern void device_scan(void);
void __init paging_init(void)
{
switch(sparc_cpu_model) {
case sun4c:
case sun4e:
case sun4:
sun4c_paging_init();
sparc_unmapped_base = 0xe0000000;
BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);
break;
case sun4m:
case sun4d:
srmmu_paging_init();
sparc_unmapped_base = 0x50000000;
BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);
break;
default:
prom_printf("paging_init: Cannot init paging on this Sparc\n");
prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);
prom_printf("paging_init: Halting...\n");
prom_halt();
};
/* Initialize the protection map with non-constant, MMU dependent values. */
protection_map[0] = PAGE_NONE;
protection_map[1] = PAGE_READONLY;
protection_map[2] = PAGE_COPY;
protection_map[3] = PAGE_COPY;
protection_map[4] = PAGE_READONLY;
protection_map[5] = PAGE_READONLY;
protection_map[6] = PAGE_COPY;
protection_map[7] = PAGE_COPY;
protection_map[8] = PAGE_NONE;
protection_map[9] = PAGE_READONLY;
protection_map[10] = PAGE_SHARED;
protection_map[11] = PAGE_SHARED;
protection_map[12] = PAGE_READONLY;
protection_map[13] = PAGE_READONLY;
protection_map[14] = PAGE_SHARED;
protection_map[15] = PAGE_SHARED;
btfixup();
device_scan();
}
struct cache_palias *sparc_aliases;
static void __init taint_real_pages(void)
{
int i;
for (i = 0; sp_banks[i].num_bytes; i++) {
unsigned long start, end;
start = sp_banks[i].base_addr;
end = start + sp_banks[i].num_bytes;
while (start < end) {
set_bit(start >> 20, sparc_valid_addr_bitmap);
start += PAGE_SIZE;
}
}
}
void map_high_region(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long tmp;
#ifdef CONFIG_DEBUG_HIGHMEM
printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);
#endif
for (tmp = start_pfn; tmp < end_pfn; tmp++) {
struct page *page = pfn_to_page(tmp);
ClearPageReserved(page);
set_bit(PG_highmem, &page->flags);
set_page_count(page, 1);
__free_page(page);
totalhigh_pages++;
}
}
void __init mem_init(void)
{
int codepages = 0;
int datapages = 0;
int initpages = 0;
int reservedpages = 0;
int i;
if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
prom_printf("BUG: fixmap and pkmap areas overlap\n");
prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",
PKMAP_BASE,
(unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
FIXADDR_START);
prom_printf("Please mail sparclinux@vger.kernel.org.\n");
prom_halt();
}
/* Saves us work later. */
memset((void *)&empty_zero_page, 0, PAGE_SIZE);
i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
i += 1;
sparc_valid_addr_bitmap = (unsigned long *)
__alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);
if (sparc_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc_valid_addr_bitmap, 0, i << 2);
taint_real_pages();
max_mapnr = last_valid_pfn - pfn_base;
high_memory = __va(max_low_pfn << PAGE_SHIFT);
totalram_pages = free_all_bootmem();
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;
if (end_pfn <= highstart_pfn)
continue;
if (start_pfn < highstart_pfn)
start_pfn = highstart_pfn;
map_high_region(start_pfn, end_pfn);
}
totalram_pages += totalhigh_pages;
codepages = (((unsigned long) &etext) - ((unsigned long)&_start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) &edata) - ((unsigned long)&etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
/* Ignore memory holes for the purpose of counting reserved pages */
for (i=0; i < max_low_pfn; i++)
if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)
&& PageReserved(pfn_to_page(i)))
reservedpages++;
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT - 10),
codepages << (PAGE_SHIFT-10),
reservedpages << (PAGE_SHIFT - 10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
totalhigh_pages << (PAGE_SHIFT-10));
}
void free_initmem (void)
{
unsigned long addr;
addr = (unsigned long)(&__init_begin);
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
struct page *p;
p = virt_to_page(addr);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
totalram_pages++;
num_physpages++;
}
printk (KERN_INFO "Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk (KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
num_physpages++;
}
}
#endif
void sparc_flush_page_to_ram(struct page *page)
{
unsigned long vaddr = (unsigned long)page_address(page);
if (vaddr)
__flush_page_to_ram(vaddr);
}

318
arch/sparc/mm/io-unit.c Normal file
View File

@@ -0,0 +1,318 @@
/* $Id: io-unit.c,v 1.24 2001/12/17 07:05:09 davem Exp $
* io-unit.c: IO-UNIT specific routines for memory management.
*
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/highmem.h> /* pte_offset_map => kmap_atomic */
#include <linux/bitops.h>
#include <asm/scatterlist.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sbus.h>
#include <asm/io.h>
#include <asm/io-unit.h>
#include <asm/mxcc.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
/* #define IOUNIT_DEBUG */
#ifdef IOUNIT_DEBUG
#define IOD(x) printk(x)
#else
#define IOD(x) do { } while (0)
#endif
#define IOPERM (IOUPTE_CACHE | IOUPTE_WRITE | IOUPTE_VALID)
#define MKIOPTE(phys) __iopte((((phys)>>4) & IOUPTE_PAGE) | IOPERM)
void __init
iounit_init(int sbi_node, int io_node, struct sbus_bus *sbus)
{
iopte_t *xpt, *xptend;
struct iounit_struct *iounit;
struct linux_prom_registers iommu_promregs[PROMREG_MAX];
struct resource r;
iounit = kmalloc(sizeof(struct iounit_struct), GFP_ATOMIC);
memset(iounit, 0, sizeof(*iounit));
iounit->limit[0] = IOUNIT_BMAP1_START;
iounit->limit[1] = IOUNIT_BMAP2_START;
iounit->limit[2] = IOUNIT_BMAPM_START;
iounit->limit[3] = IOUNIT_BMAPM_END;
iounit->rotor[1] = IOUNIT_BMAP2_START;
iounit->rotor[2] = IOUNIT_BMAPM_START;
xpt = NULL;
if(prom_getproperty(sbi_node, "reg", (void *) iommu_promregs,
sizeof(iommu_promregs)) != -1) {
prom_apply_generic_ranges(io_node, 0, iommu_promregs, 3);
memset(&r, 0, sizeof(r));
r.flags = iommu_promregs[2].which_io;
r.start = iommu_promregs[2].phys_addr;
xpt = (iopte_t *) sbus_ioremap(&r, 0, PAGE_SIZE * 16, "XPT");
}
if(!xpt) panic("Cannot map External Page Table.");
sbus->iommu = (struct iommu_struct *)iounit;
iounit->page_table = xpt;
for (xptend = iounit->page_table + (16 * PAGE_SIZE) / sizeof(iopte_t);
xpt < xptend;)
iopte_val(*xpt++) = 0;
}
/* One has to hold iounit->lock to call this */
static unsigned long iounit_get_area(struct iounit_struct *iounit, unsigned long vaddr, int size)
{
int i, j, k, npages;
unsigned long rotor, scan, limit;
iopte_t iopte;
npages = ((vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
/* A tiny bit of magic ingredience :) */
switch (npages) {
case 1: i = 0x0231; break;
case 2: i = 0x0132; break;
default: i = 0x0213; break;
}
IOD(("iounit_get_area(%08lx,%d[%d])=", vaddr, size, npages));
next: j = (i & 15);
rotor = iounit->rotor[j - 1];
limit = iounit->limit[j];
scan = rotor;
nexti: scan = find_next_zero_bit(iounit->bmap, limit, scan);
if (scan + npages > limit) {
if (limit != rotor) {
limit = rotor;
scan = iounit->limit[j - 1];
goto nexti;
}
i >>= 4;
if (!(i & 15))
panic("iounit_get_area: Couldn't find free iopte slots for (%08lx,%d)\n", vaddr, size);
goto next;
}
for (k = 1, scan++; k < npages; k++)
if (test_bit(scan++, iounit->bmap))
goto nexti;
iounit->rotor[j - 1] = (scan < limit) ? scan : iounit->limit[j - 1];
scan -= npages;
iopte = MKIOPTE(__pa(vaddr & PAGE_MASK));
vaddr = IOUNIT_DMA_BASE + (scan << PAGE_SHIFT) + (vaddr & ~PAGE_MASK);
for (k = 0; k < npages; k++, iopte = __iopte(iopte_val(iopte) + 0x100), scan++) {
set_bit(scan, iounit->bmap);
iounit->page_table[scan] = iopte;
}
IOD(("%08lx\n", vaddr));
return vaddr;
}
static __u32 iounit_get_scsi_one(char *vaddr, unsigned long len, struct sbus_bus *sbus)
{
unsigned long ret, flags;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
spin_lock_irqsave(&iounit->lock, flags);
ret = iounit_get_area(iounit, (unsigned long)vaddr, len);
spin_unlock_irqrestore(&iounit->lock, flags);
return ret;
}
static void iounit_get_scsi_sgl(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
unsigned long flags;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
/* FIXME: Cache some resolved pages - often several sg entries are to the same page */
spin_lock_irqsave(&iounit->lock, flags);
while (sz != 0) {
--sz;
sg[sz].dvma_address = iounit_get_area(iounit, (unsigned long)page_address(sg[sz].page) + sg[sz].offset, sg[sz].length);
sg[sz].dvma_length = sg[sz].length;
}
spin_unlock_irqrestore(&iounit->lock, flags);
}
static void iounit_release_scsi_one(__u32 vaddr, unsigned long len, struct sbus_bus *sbus)
{
unsigned long flags;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
spin_lock_irqsave(&iounit->lock, flags);
len = ((vaddr & ~PAGE_MASK) + len + (PAGE_SIZE-1)) >> PAGE_SHIFT;
vaddr = (vaddr - IOUNIT_DMA_BASE) >> PAGE_SHIFT;
IOD(("iounit_release %08lx-%08lx\n", (long)vaddr, (long)len+vaddr));
for (len += vaddr; vaddr < len; vaddr++)
clear_bit(vaddr, iounit->bmap);
spin_unlock_irqrestore(&iounit->lock, flags);
}
static void iounit_release_scsi_sgl(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
unsigned long flags;
unsigned long vaddr, len;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
spin_lock_irqsave(&iounit->lock, flags);
while (sz != 0) {
--sz;
len = ((sg[sz].dvma_address & ~PAGE_MASK) + sg[sz].length + (PAGE_SIZE-1)) >> PAGE_SHIFT;
vaddr = (sg[sz].dvma_address - IOUNIT_DMA_BASE) >> PAGE_SHIFT;
IOD(("iounit_release %08lx-%08lx\n", (long)vaddr, (long)len+vaddr));
for (len += vaddr; vaddr < len; vaddr++)
clear_bit(vaddr, iounit->bmap);
}
spin_unlock_irqrestore(&iounit->lock, flags);
}
#ifdef CONFIG_SBUS
static int iounit_map_dma_area(dma_addr_t *pba, unsigned long va, __u32 addr, int len)
{
unsigned long page, end;
pgprot_t dvma_prot;
iopte_t *iopte;
struct sbus_bus *sbus;
*pba = addr;
dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV);
end = PAGE_ALIGN((addr + len));
while(addr < end) {
page = va;
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
long i;
pgdp = pgd_offset(&init_mm, addr);
pmdp = pmd_offset(pgdp, addr);
ptep = pte_offset_map(pmdp, addr);
set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot));
i = ((addr - IOUNIT_DMA_BASE) >> PAGE_SHIFT);
for_each_sbus(sbus) {
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
iopte = (iopte_t *)(iounit->page_table + i);
*iopte = MKIOPTE(__pa(page));
}
}
addr += PAGE_SIZE;
va += PAGE_SIZE;
}
flush_cache_all();
flush_tlb_all();
return 0;
}
static void iounit_unmap_dma_area(unsigned long addr, int len)
{
/* XXX Somebody please fill this in */
}
/* XXX We do not pass sbus device here, bad. */
static struct page *iounit_translate_dvma(unsigned long addr)
{
struct sbus_bus *sbus = sbus_root; /* They are all the same */
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
int i;
iopte_t *iopte;
i = ((addr - IOUNIT_DMA_BASE) >> PAGE_SHIFT);
iopte = (iopte_t *)(iounit->page_table + i);
return pfn_to_page(iopte_val(*iopte) >> (PAGE_SHIFT-4)); /* XXX sun4d guru, help */
}
#endif
static char *iounit_lockarea(char *vaddr, unsigned long len)
{
/* FIXME: Write this */
return vaddr;
}
static void iounit_unlockarea(char *vaddr, unsigned long len)
{
/* FIXME: Write this */
}
void __init ld_mmu_iounit(void)
{
BTFIXUPSET_CALL(mmu_lockarea, iounit_lockarea, BTFIXUPCALL_RETO0);
BTFIXUPSET_CALL(mmu_unlockarea, iounit_unlockarea, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(mmu_get_scsi_one, iounit_get_scsi_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_get_scsi_sgl, iounit_get_scsi_sgl, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_release_scsi_one, iounit_release_scsi_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_release_scsi_sgl, iounit_release_scsi_sgl, BTFIXUPCALL_NORM);
#ifdef CONFIG_SBUS
BTFIXUPSET_CALL(mmu_map_dma_area, iounit_map_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_unmap_dma_area, iounit_unmap_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_translate_dvma, iounit_translate_dvma, BTFIXUPCALL_NORM);
#endif
}
__u32 iounit_map_dma_init(struct sbus_bus *sbus, int size)
{
int i, j, k, npages;
unsigned long rotor, scan, limit;
unsigned long flags;
__u32 ret;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
npages = (size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
i = 0x0213;
spin_lock_irqsave(&iounit->lock, flags);
next: j = (i & 15);
rotor = iounit->rotor[j - 1];
limit = iounit->limit[j];
scan = rotor;
nexti: scan = find_next_zero_bit(iounit->bmap, limit, scan);
if (scan + npages > limit) {
if (limit != rotor) {
limit = rotor;
scan = iounit->limit[j - 1];
goto nexti;
}
i >>= 4;
if (!(i & 15))
panic("iounit_map_dma_init: Couldn't find free iopte slots for %d bytes\n", size);
goto next;
}
for (k = 1, scan++; k < npages; k++)
if (test_bit(scan++, iounit->bmap))
goto nexti;
iounit->rotor[j - 1] = (scan < limit) ? scan : iounit->limit[j - 1];
scan -= npages;
ret = IOUNIT_DMA_BASE + (scan << PAGE_SHIFT);
for (k = 0; k < npages; k++, scan++)
set_bit(scan, iounit->bmap);
spin_unlock_irqrestore(&iounit->lock, flags);
return ret;
}
__u32 iounit_map_dma_page(__u32 vaddr, void *addr, struct sbus_bus *sbus)
{
int scan = (vaddr - IOUNIT_DMA_BASE) >> PAGE_SHIFT;
struct iounit_struct *iounit = (struct iounit_struct *)sbus->iommu;
iounit->page_table[scan] = MKIOPTE(__pa(((unsigned long)addr) & PAGE_MASK));
return vaddr + (((unsigned long)addr) & ~PAGE_MASK);
}

475
arch/sparc/mm/iommu.c Normal file
View File

@@ -0,0 +1,475 @@
/*
* iommu.c: IOMMU specific routines for memory management.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h> /* pte_offset_map => kmap_atomic */
#include <asm/scatterlist.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sbus.h>
#include <asm/io.h>
#include <asm/mxcc.h>
#include <asm/mbus.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/bitext.h>
#include <asm/iommu.h>
#include <asm/dma.h>
/*
* This can be sized dynamically, but we will do this
* only when we have a guidance about actual I/O pressures.
*/
#define IOMMU_RNGE IOMMU_RNGE_256MB
#define IOMMU_START 0xF0000000
#define IOMMU_WINSIZE (256*1024*1024U)
#define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 265KB */
#define IOMMU_ORDER 6 /* 4096 * (1<<6) */
/* srmmu.c */
extern int viking_mxcc_present;
BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
extern int flush_page_for_dma_global;
static int viking_flush;
/* viking.S */
extern void viking_flush_page(unsigned long page);
extern void viking_mxcc_flush_page(unsigned long page);
/*
* Values precomputed according to CPU type.
*/
static unsigned int ioperm_noc; /* Consistent mapping iopte flags */
static pgprot_t dvma_prot; /* Consistent mapping pte flags */
#define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID)
#define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ)
void __init
iommu_init(int iommund, struct sbus_bus *sbus)
{
unsigned int impl, vers;
unsigned long tmp;
struct iommu_struct *iommu;
struct linux_prom_registers iommu_promregs[PROMREG_MAX];
struct resource r;
unsigned long *bitmap;
iommu = kmalloc(sizeof(struct iommu_struct), GFP_ATOMIC);
if (!iommu) {
prom_printf("Unable to allocate iommu structure\n");
prom_halt();
}
iommu->regs = NULL;
if (prom_getproperty(iommund, "reg", (void *) iommu_promregs,
sizeof(iommu_promregs)) != -1) {
memset(&r, 0, sizeof(r));
r.flags = iommu_promregs[0].which_io;
r.start = iommu_promregs[0].phys_addr;
iommu->regs = (struct iommu_regs *)
sbus_ioremap(&r, 0, PAGE_SIZE * 3, "iommu_regs");
}
if (!iommu->regs) {
prom_printf("Cannot map IOMMU registers\n");
prom_halt();
}
impl = (iommu->regs->control & IOMMU_CTRL_IMPL) >> 28;
vers = (iommu->regs->control & IOMMU_CTRL_VERS) >> 24;
tmp = iommu->regs->control;
tmp &= ~(IOMMU_CTRL_RNGE);
tmp |= (IOMMU_RNGE_256MB | IOMMU_CTRL_ENAB);
iommu->regs->control = tmp;
iommu_invalidate(iommu->regs);
iommu->start = IOMMU_START;
iommu->end = 0xffffffff;
/* Allocate IOMMU page table */
/* Stupid alignment constraints give me a headache.
We need 256K or 512K or 1M or 2M area aligned to
its size and current gfp will fortunately give
it to us. */
tmp = __get_free_pages(GFP_KERNEL, IOMMU_ORDER);
if (!tmp) {
prom_printf("Unable to allocate iommu table [0x%08x]\n",
IOMMU_NPTES*sizeof(iopte_t));
prom_halt();
}
iommu->page_table = (iopte_t *)tmp;
/* Initialize new table. */
memset(iommu->page_table, 0, IOMMU_NPTES*sizeof(iopte_t));
flush_cache_all();
flush_tlb_all();
iommu->regs->base = __pa((unsigned long) iommu->page_table) >> 4;
iommu_invalidate(iommu->regs);
bitmap = kmalloc(IOMMU_NPTES>>3, GFP_KERNEL);
if (!bitmap) {
prom_printf("Unable to allocate iommu bitmap [%d]\n",
(int)(IOMMU_NPTES>>3));
prom_halt();
}
bit_map_init(&iommu->usemap, bitmap, IOMMU_NPTES);
/* To be coherent on HyperSparc, the page color of DVMA
* and physical addresses must match.
*/
if (srmmu_modtype == HyperSparc)
iommu->usemap.num_colors = vac_cache_size >> PAGE_SHIFT;
else
iommu->usemap.num_colors = 1;
printk("IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n",
impl, vers, iommu->page_table,
(int)(IOMMU_NPTES*sizeof(iopte_t)), (int)IOMMU_NPTES);
sbus->iommu = iommu;
}
/* This begs to be btfixup-ed by srmmu. */
/* Flush the iotlb entries to ram. */
/* This could be better if we didn't have to flush whole pages. */
static void iommu_flush_iotlb(iopte_t *iopte, unsigned int niopte)
{
unsigned long start;
unsigned long end;
start = (unsigned long)iopte & PAGE_MASK;
end = PAGE_ALIGN(start + niopte*sizeof(iopte_t));
if (viking_mxcc_present) {
while(start < end) {
viking_mxcc_flush_page(start);
start += PAGE_SIZE;
}
} else if (viking_flush) {
while(start < end) {
viking_flush_page(start);
start += PAGE_SIZE;
}
} else {
while(start < end) {
__flush_page_to_ram(start);
start += PAGE_SIZE;
}
}
}
static u32 iommu_get_one(struct page *page, int npages, struct sbus_bus *sbus)
{
struct iommu_struct *iommu = sbus->iommu;
int ioptex;
iopte_t *iopte, *iopte0;
unsigned int busa, busa0;
int i;
/* page color = pfn of page */
ioptex = bit_map_string_get(&iommu->usemap, npages, page_to_pfn(page));
if (ioptex < 0)
panic("iommu out");
busa0 = iommu->start + (ioptex << PAGE_SHIFT);
iopte0 = &iommu->page_table[ioptex];
busa = busa0;
iopte = iopte0;
for (i = 0; i < npages; i++) {
iopte_val(*iopte) = MKIOPTE(page_to_pfn(page), IOPERM);
iommu_invalidate_page(iommu->regs, busa);
busa += PAGE_SIZE;
iopte++;
page++;
}
iommu_flush_iotlb(iopte0, npages);
return busa0;
}
static u32 iommu_get_scsi_one(char *vaddr, unsigned int len,
struct sbus_bus *sbus)
{
unsigned long off;
int npages;
struct page *page;
u32 busa;
off = (unsigned long)vaddr & ~PAGE_MASK;
npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT;
page = virt_to_page((unsigned long)vaddr & PAGE_MASK);
busa = iommu_get_one(page, npages, sbus);
return busa + off;
}
static __u32 iommu_get_scsi_one_noflush(char *vaddr, unsigned long len, struct sbus_bus *sbus)
{
return iommu_get_scsi_one(vaddr, len, sbus);
}
static __u32 iommu_get_scsi_one_gflush(char *vaddr, unsigned long len, struct sbus_bus *sbus)
{
flush_page_for_dma(0);
return iommu_get_scsi_one(vaddr, len, sbus);
}
static __u32 iommu_get_scsi_one_pflush(char *vaddr, unsigned long len, struct sbus_bus *sbus)
{
unsigned long page = ((unsigned long) vaddr) & PAGE_MASK;
while(page < ((unsigned long)(vaddr + len))) {
flush_page_for_dma(page);
page += PAGE_SIZE;
}
return iommu_get_scsi_one(vaddr, len, sbus);
}
static void iommu_get_scsi_sgl_noflush(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
int n;
while (sz != 0) {
--sz;
n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
sg->dvma_address = iommu_get_one(sg->page, n, sbus) + sg->offset;
sg->dvma_length = (__u32) sg->length;
sg++;
}
}
static void iommu_get_scsi_sgl_gflush(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
int n;
flush_page_for_dma(0);
while (sz != 0) {
--sz;
n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
sg->dvma_address = iommu_get_one(sg->page, n, sbus) + sg->offset;
sg->dvma_length = (__u32) sg->length;
sg++;
}
}
static void iommu_get_scsi_sgl_pflush(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
unsigned long page, oldpage = 0;
int n, i;
while(sz != 0) {
--sz;
n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
/*
* We expect unmapped highmem pages to be not in the cache.
* XXX Is this a good assumption?
* XXX What if someone else unmaps it here and races us?
*/
if ((page = (unsigned long) page_address(sg->page)) != 0) {
for (i = 0; i < n; i++) {
if (page != oldpage) { /* Already flushed? */
flush_page_for_dma(page);
oldpage = page;
}
page += PAGE_SIZE;
}
}
sg->dvma_address = iommu_get_one(sg->page, n, sbus) + sg->offset;
sg->dvma_length = (__u32) sg->length;
sg++;
}
}
static void iommu_release_one(u32 busa, int npages, struct sbus_bus *sbus)
{
struct iommu_struct *iommu = sbus->iommu;
int ioptex;
int i;
if (busa < iommu->start)
BUG();
ioptex = (busa - iommu->start) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
iopte_val(iommu->page_table[ioptex + i]) = 0;
iommu_invalidate_page(iommu->regs, busa);
busa += PAGE_SIZE;
}
bit_map_clear(&iommu->usemap, ioptex, npages);
}
static void iommu_release_scsi_one(__u32 vaddr, unsigned long len, struct sbus_bus *sbus)
{
unsigned long off;
int npages;
off = vaddr & ~PAGE_MASK;
npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT;
iommu_release_one(vaddr & PAGE_MASK, npages, sbus);
}
static void iommu_release_scsi_sgl(struct scatterlist *sg, int sz, struct sbus_bus *sbus)
{
int n;
while(sz != 0) {
--sz;
n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
iommu_release_one(sg->dvma_address & PAGE_MASK, n, sbus);
sg->dvma_address = 0x21212121;
sg++;
}
}
#ifdef CONFIG_SBUS
static int iommu_map_dma_area(dma_addr_t *pba, unsigned long va,
unsigned long addr, int len)
{
unsigned long page, end;
struct iommu_struct *iommu = sbus_root->iommu;
iopte_t *iopte = iommu->page_table;
iopte_t *first;
int ioptex;
if ((va & ~PAGE_MASK) != 0) BUG();
if ((addr & ~PAGE_MASK) != 0) BUG();
if ((len & ~PAGE_MASK) != 0) BUG();
/* page color = physical address */
ioptex = bit_map_string_get(&iommu->usemap, len >> PAGE_SHIFT,
addr >> PAGE_SHIFT);
if (ioptex < 0)
panic("iommu out");
iopte += ioptex;
first = iopte;
end = addr + len;
while(addr < end) {
page = va;
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
if (viking_mxcc_present)
viking_mxcc_flush_page(page);
else if (viking_flush)
viking_flush_page(page);
else
__flush_page_to_ram(page);
pgdp = pgd_offset(&init_mm, addr);
pmdp = pmd_offset(pgdp, addr);
ptep = pte_offset_map(pmdp, addr);
set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot));
}
iopte_val(*iopte++) =
MKIOPTE(page_to_pfn(virt_to_page(page)), ioperm_noc);
addr += PAGE_SIZE;
va += PAGE_SIZE;
}
/* P3: why do we need this?
*
* DAVEM: Because there are several aspects, none of which
* are handled by a single interface. Some cpus are
* completely not I/O DMA coherent, and some have
* virtually indexed caches. The driver DMA flushing
* methods handle the former case, but here during
* IOMMU page table modifications, and usage of non-cacheable
* cpu mappings of pages potentially in the cpu caches, we have
* to handle the latter case as well.
*/
flush_cache_all();
iommu_flush_iotlb(first, len >> PAGE_SHIFT);
flush_tlb_all();
iommu_invalidate(iommu->regs);
*pba = iommu->start + (ioptex << PAGE_SHIFT);
return 0;
}
static void iommu_unmap_dma_area(unsigned long busa, int len)
{
struct iommu_struct *iommu = sbus_root->iommu;
iopte_t *iopte = iommu->page_table;
unsigned long end;
int ioptex = (busa - iommu->start) >> PAGE_SHIFT;
if ((busa & ~PAGE_MASK) != 0) BUG();
if ((len & ~PAGE_MASK) != 0) BUG();
iopte += ioptex;
end = busa + len;
while (busa < end) {
iopte_val(*iopte++) = 0;
busa += PAGE_SIZE;
}
flush_tlb_all();
iommu_invalidate(iommu->regs);
bit_map_clear(&iommu->usemap, ioptex, len >> PAGE_SHIFT);
}
static struct page *iommu_translate_dvma(unsigned long busa)
{
struct iommu_struct *iommu = sbus_root->iommu;
iopte_t *iopte = iommu->page_table;
iopte += ((busa - iommu->start) >> PAGE_SHIFT);
return pfn_to_page((iopte_val(*iopte) & IOPTE_PAGE) >> (PAGE_SHIFT-4));
}
#endif
static char *iommu_lockarea(char *vaddr, unsigned long len)
{
return vaddr;
}
static void iommu_unlockarea(char *vaddr, unsigned long len)
{
}
void __init ld_mmu_iommu(void)
{
viking_flush = (BTFIXUPVAL_CALL(flush_page_for_dma) == (unsigned long)viking_flush_page);
BTFIXUPSET_CALL(mmu_lockarea, iommu_lockarea, BTFIXUPCALL_RETO0);
BTFIXUPSET_CALL(mmu_unlockarea, iommu_unlockarea, BTFIXUPCALL_NOP);
if (!BTFIXUPVAL_CALL(flush_page_for_dma)) {
/* IO coherent chip */
BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_noflush, BTFIXUPCALL_RETO0);
BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_noflush, BTFIXUPCALL_NORM);
} else if (flush_page_for_dma_global) {
/* flush_page_for_dma flushes everything, no matter of what page is it */
BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_gflush, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_gflush, BTFIXUPCALL_NORM);
} else {
BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_pflush, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_pflush, BTFIXUPCALL_NORM);
}
BTFIXUPSET_CALL(mmu_release_scsi_one, iommu_release_scsi_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_release_scsi_sgl, iommu_release_scsi_sgl, BTFIXUPCALL_NORM);
#ifdef CONFIG_SBUS
BTFIXUPSET_CALL(mmu_map_dma_area, iommu_map_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_unmap_dma_area, iommu_unmap_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_translate_dvma, iommu_translate_dvma, BTFIXUPCALL_NORM);
#endif
if (viking_mxcc_present || srmmu_modtype == HyperSparc) {
dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV);
ioperm_noc = IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID;
} else {
dvma_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV);
ioperm_noc = IOPTE_WRITE | IOPTE_VALID;
}
}

46
arch/sparc/mm/loadmmu.c Normal file
View File

@@ -0,0 +1,46 @@
/* $Id: loadmmu.c,v 1.56 2000/02/08 20:24:21 davem Exp $
* loadmmu.c: This code loads up all the mm function pointers once the
* machine type has been determined. It also sets the static
* mmu values such as PAGE_NONE, etc.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/a.out.h>
#include <asm/mmu_context.h>
#include <asm/oplib.h>
struct ctx_list *ctx_list_pool;
struct ctx_list ctx_free;
struct ctx_list ctx_used;
unsigned int pg_iobits;
extern void ld_mmu_sun4c(void);
extern void ld_mmu_srmmu(void);
void __init load_mmu(void)
{
switch(sparc_cpu_model) {
case sun4c:
case sun4:
ld_mmu_sun4c();
break;
case sun4m:
case sun4d:
ld_mmu_srmmu();
break;
default:
prom_printf("load_mmu: %d unsupported\n", (int)sparc_cpu_model);
prom_halt();
}
btfixup();
}

59
arch/sparc/mm/nosrmmu.c Normal file
View File

@@ -0,0 +1,59 @@
/* $Id: nosrmmu.c,v 1.5 1999/11/19 04:11:54 davem Exp $
* nosrmmu.c: This file is a bunch of dummies for sun4 compiles,
* so that it does not need srmmu and avoid ifdefs.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <asm/mbus.h>
#include <asm/sbus.h>
static char shouldnothappen[] __initdata = "SUN4 kernel can only run on SUN4\n";
enum mbus_module srmmu_modtype;
void *srmmu_nocache_pool;
int vac_cache_size = 0;
static void __init should_not_happen(void)
{
prom_printf(shouldnothappen);
prom_halt();
}
void __init srmmu_frob_mem_map(unsigned long start_mem)
{
should_not_happen();
}
unsigned long __init srmmu_paging_init(unsigned long start_mem, unsigned long end_mem)
{
should_not_happen();
return 0;
}
void __init ld_mmu_srmmu(void)
{
should_not_happen();
}
void srmmu_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly)
{
}
void srmmu_unmapioaddr(unsigned long virt_addr)
{
}
__u32 iounit_map_dma_init(struct sbus_bus *sbus, int size)
{
return 0;
}
__u32 iounit_map_dma_page(__u32 vaddr, void *addr, struct sbus_bus *sbus)
{
return 0;
}

77
arch/sparc/mm/nosun4c.c Normal file
View File

@@ -0,0 +1,77 @@
/* $Id: nosun4c.c,v 1.3 2000/02/14 04:52:36 jj Exp $
* nosun4c.c: This file is a bunch of dummies for SMP compiles,
* so that it does not need sun4c and avoid ifdefs.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <asm/pgtable.h>
static char shouldnothappen[] __initdata = "32bit SMP kernel only supports sun4m and sun4d\n";
/* Dummies */
struct sun4c_mmu_ring {
unsigned long xxx1[3];
unsigned char xxx2[2];
int xxx3;
};
struct sun4c_mmu_ring sun4c_kernel_ring;
struct sun4c_mmu_ring sun4c_kfree_ring;
unsigned long sun4c_kernel_faults;
unsigned long *sun4c_memerr_reg;
static void __init should_not_happen(void)
{
prom_printf(shouldnothappen);
prom_halt();
}
unsigned long __init sun4c_paging_init(unsigned long start_mem, unsigned long end_mem)
{
should_not_happen();
return 0;
}
void __init ld_mmu_sun4c(void)
{
should_not_happen();
}
void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly)
{
}
void sun4c_unmapioaddr(unsigned long virt_addr)
{
}
void sun4c_complete_all_stores(void)
{
}
pte_t *sun4c_pte_offset(pmd_t * dir, unsigned long address)
{
return NULL;
}
pte_t *sun4c_pte_offset_kernel(pmd_t *dir, unsigned long address)
{
return NULL;
}
void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
}
void __init sun4c_probe_vac(void)
{
should_not_happen();
}
void __init sun4c_probe_memerr_reg(void)
{
should_not_happen();
}

2274
arch/sparc/mm/srmmu.c Normal file

File diff suppressed because it is too large Load Diff

2276
arch/sparc/mm/sun4c.c Normal file

File diff suppressed because it is too large Load Diff

256
arch/sparc/mm/swift.S Normal file
View File

@@ -0,0 +1,256 @@
/* $Id: swift.S,v 1.9 2002/01/08 11:11:59 davem Exp $
* swift.S: MicroSparc-II mmu/cache operations.
*
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
*/
#include <linux/config.h>
#include <asm/psr.h>
#include <asm/asi.h>
#include <asm/page.h>
#include <asm/pgtsrmmu.h>
#include <asm/asm_offsets.h>
.text
.align 4
#if 1 /* XXX screw this, I can't get the VAC flushes working
* XXX reliably... -DaveM
*/
.globl swift_flush_cache_all, swift_flush_cache_mm
.globl swift_flush_cache_range, swift_flush_cache_page
.globl swift_flush_page_for_dma
.globl swift_flush_page_to_ram
swift_flush_cache_all:
swift_flush_cache_mm:
swift_flush_cache_range:
swift_flush_cache_page:
swift_flush_page_for_dma:
swift_flush_page_to_ram:
sethi %hi(0x2000), %o0
1: subcc %o0, 0x10, %o0
add %o0, %o0, %o1
sta %g0, [%o0] ASI_M_DATAC_TAG
bne 1b
sta %g0, [%o1] ASI_M_TXTC_TAG
retl
nop
#else
.globl swift_flush_cache_all
swift_flush_cache_all:
WINDOW_FLUSH(%g4, %g5)
/* Just clear out all the tags. */
sethi %hi(16 * 1024), %o0
1: subcc %o0, 16, %o0
sta %g0, [%o0] ASI_M_TXTC_TAG
bne 1b
sta %g0, [%o0] ASI_M_DATAC_TAG
retl
nop
.globl swift_flush_cache_mm
swift_flush_cache_mm:
ld [%o0 + AOFF_mm_context], %g2
cmp %g2, -1
be swift_flush_cache_mm_out
WINDOW_FLUSH(%g4, %g5)
rd %psr, %g1
andn %g1, PSR_ET, %g3
wr %g3, 0x0, %psr
nop
nop
mov SRMMU_CTX_REG, %g7
lda [%g7] ASI_M_MMUREGS, %g5
sta %g2, [%g7] ASI_M_MMUREGS
#if 1
sethi %hi(0x2000), %o0
1: subcc %o0, 0x10, %o0
sta %g0, [%o0] ASI_M_FLUSH_CTX
bne 1b
nop
#else
clr %o0
or %g0, 2048, %g7
or %g0, 2048, %o1
add %o1, 2048, %o2
add %o2, 2048, %o3
mov 16, %o4
add %o4, 2048, %o5
add %o5, 2048, %g2
add %g2, 2048, %g3
1: sta %g0, [%o0 ] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %o1] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %o2] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %o3] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %o4] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %o5] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %g2] ASI_M_FLUSH_CTX
sta %g0, [%o0 + %g3] ASI_M_FLUSH_CTX
subcc %g7, 32, %g7
bne 1b
add %o0, 32, %o0
#endif
mov SRMMU_CTX_REG, %g7
sta %g5, [%g7] ASI_M_MMUREGS
wr %g1, 0x0, %psr
nop
nop
swift_flush_cache_mm_out:
retl
nop
.globl swift_flush_cache_range
swift_flush_cache_range:
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
sub %o2, %o1, %o2
sethi %hi(4096), %o3
cmp %o2, %o3
bgu swift_flush_cache_mm
nop
b 70f
nop
.globl swift_flush_cache_page
swift_flush_cache_page:
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
70:
ld [%o0 + AOFF_mm_context], %g2
cmp %g2, -1
be swift_flush_cache_page_out
WINDOW_FLUSH(%g4, %g5)
rd %psr, %g1
andn %g1, PSR_ET, %g3
wr %g3, 0x0, %psr
nop
nop
mov SRMMU_CTX_REG, %g7
lda [%g7] ASI_M_MMUREGS, %g5
sta %g2, [%g7] ASI_M_MMUREGS
andn %o1, (PAGE_SIZE - 1), %o1
#if 1
sethi %hi(0x1000), %o0
1: subcc %o0, 0x10, %o0
sta %g0, [%o1 + %o0] ASI_M_FLUSH_PAGE
bne 1b
nop
#else
or %g0, 512, %g7
or %g0, 512, %o0
add %o0, 512, %o2
add %o2, 512, %o3
add %o3, 512, %o4
add %o4, 512, %o5
add %o5, 512, %g3
add %g3, 512, %g4
1: sta %g0, [%o1 ] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o0] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o2] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o3] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o4] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o5] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g3] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g4] ASI_M_FLUSH_PAGE
subcc %g7, 16, %g7
bne 1b
add %o1, 16, %o1
#endif
mov SRMMU_CTX_REG, %g7
sta %g5, [%g7] ASI_M_MMUREGS
wr %g1, 0x0, %psr
nop
nop
swift_flush_cache_page_out:
retl
nop
/* Swift is write-thru, however it is not
* I/O nor TLB-walk coherent. Also it has
* caches which are virtually indexed and tagged.
*/
.globl swift_flush_page_for_dma
.globl swift_flush_page_to_ram
swift_flush_page_for_dma:
swift_flush_page_to_ram:
andn %o0, (PAGE_SIZE - 1), %o1
#if 1
sethi %hi(0x1000), %o0
1: subcc %o0, 0x10, %o0
sta %g0, [%o1 + %o0] ASI_M_FLUSH_PAGE
bne 1b
nop
#else
or %g0, 512, %g7
or %g0, 512, %o0
add %o0, 512, %o2
add %o2, 512, %o3
add %o3, 512, %o4
add %o4, 512, %o5
add %o5, 512, %g3
add %g3, 512, %g4
1: sta %g0, [%o1 ] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o0] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o2] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o3] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o4] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %o5] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g3] ASI_M_FLUSH_PAGE
sta %g0, [%o1 + %g4] ASI_M_FLUSH_PAGE
subcc %g7, 16, %g7
bne 1b
add %o1, 16, %o1
#endif
retl
nop
#endif
.globl swift_flush_sig_insns
swift_flush_sig_insns:
flush %o1
retl
flush %o1 + 4
.globl swift_flush_tlb_mm
.globl swift_flush_tlb_range
.globl swift_flush_tlb_all
swift_flush_tlb_range:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
swift_flush_tlb_mm:
ld [%o0 + AOFF_mm_context], %g2
cmp %g2, -1
be swift_flush_tlb_all_out
swift_flush_tlb_all:
mov 0x400, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
swift_flush_tlb_all_out:
retl
nop
.globl swift_flush_tlb_page
swift_flush_tlb_page:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
andn %o1, (PAGE_SIZE - 1), %o1
cmp %o3, -1
be swift_flush_tlb_page_out
nop
#if 1
mov 0x400, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
#else
lda [%g1] ASI_M_MMUREGS, %g5
sta %o3, [%g1] ASI_M_MMUREGS
sta %g0, [%o1] ASI_M_FLUSH_PAGE /* rem. virt. cache. prot. */
sta %g0, [%o1] ASI_M_FLUSH_PROBE
sta %g5, [%g1] ASI_M_MMUREGS
#endif
swift_flush_tlb_page_out:
retl
nop

133
arch/sparc/mm/tsunami.S Normal file
View File

@@ -0,0 +1,133 @@
/* $Id: tsunami.S,v 1.7 2001/12/21 04:56:15 davem Exp $
* tsunami.S: High speed MicroSparc-I mmu/cache operations.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/config.h>
#include <asm/ptrace.h>
#include <asm/asm_offsets.h>
#include <asm/psr.h>
#include <asm/asi.h>
#include <asm/page.h>
#include <asm/pgtsrmmu.h>
.text
.align 4
.globl tsunami_flush_cache_all, tsunami_flush_cache_mm
.globl tsunami_flush_cache_range, tsunami_flush_cache_page
.globl tsunami_flush_page_to_ram, tsunami_flush_page_for_dma
.globl tsunami_flush_sig_insns
.globl tsunami_flush_tlb_all, tsunami_flush_tlb_mm
.globl tsunami_flush_tlb_range, tsunami_flush_tlb_page
/* Sliiick... */
tsunami_flush_cache_page:
tsunami_flush_cache_range:
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
tsunami_flush_cache_mm:
ld [%o0 + AOFF_mm_context], %g2
cmp %g2, -1
be tsunami_flush_cache_out
tsunami_flush_cache_all:
WINDOW_FLUSH(%g4, %g5)
tsunami_flush_page_for_dma:
sta %g0, [%g0] ASI_M_IC_FLCLEAR
sta %g0, [%g0] ASI_M_DC_FLCLEAR
tsunami_flush_cache_out:
tsunami_flush_page_to_ram:
retl
nop
tsunami_flush_sig_insns:
flush %o1
retl
flush %o1 + 4
/* More slick stuff... */
tsunami_flush_tlb_range:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
tsunami_flush_tlb_mm:
ld [%o0 + AOFF_mm_context], %g2
cmp %g2, -1
be tsunami_flush_tlb_out
tsunami_flush_tlb_all:
mov 0x400, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
nop
nop
nop
nop
nop
tsunami_flush_tlb_out:
retl
nop
/* This one can be done in a fine grained manner... */
tsunami_flush_tlb_page:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
andn %o1, (PAGE_SIZE - 1), %o1
cmp %o3, -1
be tsunami_flush_tlb_page_out
lda [%g1] ASI_M_MMUREGS, %g5
sta %o3, [%g1] ASI_M_MMUREGS
sta %g0, [%o1] ASI_M_FLUSH_PROBE
nop
nop
nop
nop
nop
tsunami_flush_tlb_page_out:
retl
sta %g5, [%g1] ASI_M_MMUREGS
#define MIRROR_BLOCK(dst, src, offset, t0, t1, t2, t3) \
ldd [src + offset + 0x18], t0; \
std t0, [dst + offset + 0x18]; \
ldd [src + offset + 0x10], t2; \
std t2, [dst + offset + 0x10]; \
ldd [src + offset + 0x08], t0; \
std t0, [dst + offset + 0x08]; \
ldd [src + offset + 0x00], t2; \
std t2, [dst + offset + 0x00];
.globl tsunami_copy_1page
tsunami_copy_1page:
/* NOTE: This routine has to be shorter than 70insns --jj */
or %g0, (PAGE_SIZE >> 8), %g1
1:
MIRROR_BLOCK(%o0, %o1, 0x00, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0x20, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0x40, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0x60, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0x80, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0xa0, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0xc0, %o2, %o3, %o4, %o5)
MIRROR_BLOCK(%o0, %o1, 0xe0, %o2, %o3, %o4, %o5)
subcc %g1, 1, %g1
add %o0, 0x100, %o0
bne 1b
add %o1, 0x100, %o1
.globl tsunami_setup_blockops
tsunami_setup_blockops:
sethi %hi(__copy_1page), %o0
or %o0, %lo(__copy_1page), %o0
sethi %hi(tsunami_copy_1page), %o1
or %o1, %lo(tsunami_copy_1page), %o1
sethi %hi(tsunami_setup_blockops), %o2
or %o2, %lo(tsunami_setup_blockops), %o2
ld [%o1], %o4
1: add %o1, 4, %o1
st %o4, [%o0]
add %o0, 4, %o0
cmp %o1, %o2
bne 1b
ld [%o1], %o4
sta %g0, [%g0] ASI_M_IC_FLCLEAR
sta %g0, [%g0] ASI_M_DC_FLCLEAR
retl
nop

284
arch/sparc/mm/viking.S Normal file
View File

@@ -0,0 +1,284 @@
/* $Id: viking.S,v 1.19 2001/12/21 04:56:15 davem Exp $
* viking.S: High speed Viking cache/mmu operations
*
* Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997,1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1999 Pavel Semerad (semerad@ss1000.ms.mff.cuni.cz)
*/
#include <linux/config.h>
#include <asm/ptrace.h>
#include <asm/psr.h>
#include <asm/asm_offsets.h>
#include <asm/asi.h>
#include <asm/mxcc.h>
#include <asm/page.h>
#include <asm/pgtsrmmu.h>
#include <asm/viking.h>
#include <asm/btfixup.h>
#ifdef CONFIG_SMP
.data
.align 4
sun4dsmp_flush_tlb_spin:
.word 0
#endif
.text
.align 4
.globl viking_flush_cache_all, viking_flush_cache_mm
.globl viking_flush_cache_range, viking_flush_cache_page
.globl viking_flush_page, viking_mxcc_flush_page
.globl viking_flush_page_for_dma, viking_flush_page_to_ram
.globl viking_flush_sig_insns
.globl viking_flush_tlb_all, viking_flush_tlb_mm
.globl viking_flush_tlb_range, viking_flush_tlb_page
viking_flush_page:
sethi %hi(PAGE_OFFSET), %g2
sub %o0, %g2, %g3
srl %g3, 12, %g1 ! ppage >> 12
clr %o1 ! set counter, 0 - 127
sethi %hi(PAGE_OFFSET + PAGE_SIZE - 0x80000000), %o3
sethi %hi(0x80000000), %o4
sethi %hi(VIKING_PTAG_VALID), %o5
sethi %hi(2*PAGE_SIZE), %o0
sethi %hi(PAGE_SIZE), %g7
clr %o2 ! block counter, 0 - 3
5:
sll %o1, 5, %g4
or %g4, %o4, %g4 ! 0x80000000 | (set << 5)
sll %o2, 26, %g5 ! block << 26
6:
or %g5, %g4, %g5
ldda [%g5] ASI_M_DATAC_TAG, %g2
cmp %g3, %g1 ! ptag == ppage?
bne 7f
inc %o2
andcc %g2, %o5, %g0 ! ptag VALID?
be 7f
add %g4, %o3, %g2 ! (PAGE_OFFSET + PAGE_SIZE) | (set << 5)
ld [%g2], %g3
ld [%g2 + %g7], %g3
add %g2, %o0, %g2
ld [%g2], %g3
ld [%g2 + %g7], %g3
add %g2, %o0, %g2
ld [%g2], %g3
ld [%g2 + %g7], %g3
add %g2, %o0, %g2
ld [%g2], %g3
b 8f
ld [%g2 + %g7], %g3
7:
cmp %o2, 3
ble 6b
sll %o2, 26, %g5 ! block << 26
8: inc %o1
cmp %o1, 0x7f
ble 5b
clr %o2
9: retl
nop
viking_mxcc_flush_page:
sethi %hi(PAGE_OFFSET), %g2
sub %o0, %g2, %g3
sub %g3, -PAGE_SIZE, %g3 ! ppage + PAGE_SIZE
sethi %hi(MXCC_SRCSTREAM), %o3 ! assume %hi(MXCC_SRCSTREAM) == %hi(MXCC_DESTSTREAM)
mov 0x10, %g2 ! set cacheable bit
or %o3, %lo(MXCC_SRCSTREAM), %o2
or %o3, %lo(MXCC_DESSTREAM), %o3
sub %g3, MXCC_STREAM_SIZE, %g3
6:
stda %g2, [%o2] ASI_M_MXCC
stda %g2, [%o3] ASI_M_MXCC
andncc %g3, PAGE_MASK, %g0
bne 6b
sub %g3, MXCC_STREAM_SIZE, %g3
9: retl
nop
viking_flush_cache_page:
viking_flush_cache_range:
#ifndef CONFIG_SMP
ld [%o0 + 0x0], %o0 /* XXX vma->vm_mm, GROSS XXX */
#endif
viking_flush_cache_mm:
#ifndef CONFIG_SMP
ld [%o0 + AOFF_mm_context], %g1
cmp %g1, -1
bne viking_flush_cache_all
nop
b,a viking_flush_cache_out
#endif
viking_flush_cache_all:
WINDOW_FLUSH(%g4, %g5)
viking_flush_cache_out:
retl
nop
viking_flush_tlb_all:
mov 0x400, %g1
retl
sta %g0, [%g1] ASI_M_FLUSH_PROBE
viking_flush_tlb_mm:
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o1
lda [%g1] ASI_M_MMUREGS, %g5
#ifndef CONFIG_SMP
cmp %o1, -1
be 1f
#endif
mov 0x300, %g2
sta %o1, [%g1] ASI_M_MMUREGS
sta %g0, [%g2] ASI_M_FLUSH_PROBE
retl
sta %g5, [%g1] ASI_M_MMUREGS
#ifndef CONFIG_SMP
1: retl
nop
#endif
viking_flush_tlb_range:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
lda [%g1] ASI_M_MMUREGS, %g5
#ifndef CONFIG_SMP
cmp %o3, -1
be 2f
#endif
sethi %hi(~((1 << SRMMU_PGDIR_SHIFT) - 1)), %o4
sta %o3, [%g1] ASI_M_MMUREGS
and %o1, %o4, %o1
add %o1, 0x200, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
1: sub %o1, %o4, %o1
cmp %o1, %o2
blu,a 1b
sta %g0, [%o1] ASI_M_FLUSH_PROBE
retl
sta %g5, [%g1] ASI_M_MMUREGS
#ifndef CONFIG_SMP
2: retl
nop
#endif
viking_flush_tlb_page:
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o3
lda [%g1] ASI_M_MMUREGS, %g5
#ifndef CONFIG_SMP
cmp %o3, -1
be 1f
#endif
and %o1, PAGE_MASK, %o1
sta %o3, [%g1] ASI_M_MMUREGS
sta %g0, [%o1] ASI_M_FLUSH_PROBE
retl
sta %g5, [%g1] ASI_M_MMUREGS
#ifndef CONFIG_SMP
1: retl
nop
#endif
viking_flush_page_to_ram:
viking_flush_page_for_dma:
viking_flush_sig_insns:
retl
nop
#ifdef CONFIG_SMP
.globl sun4dsmp_flush_tlb_all, sun4dsmp_flush_tlb_mm
.globl sun4dsmp_flush_tlb_range, sun4dsmp_flush_tlb_page
sun4dsmp_flush_tlb_all:
sethi %hi(sun4dsmp_flush_tlb_spin), %g3
1: ldstub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
tst %g5
bne 2f
mov 0x400, %g1
sta %g0, [%g1] ASI_M_FLUSH_PROBE
retl
stb %g0, [%g3 + %lo(sun4dsmp_flush_tlb_spin)]
2: tst %g5
bne,a 2b
ldub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
b,a 1b
sun4dsmp_flush_tlb_mm:
sethi %hi(sun4dsmp_flush_tlb_spin), %g3
1: ldstub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
tst %g5
bne 2f
mov SRMMU_CTX_REG, %g1
ld [%o0 + AOFF_mm_context], %o1
lda [%g1] ASI_M_MMUREGS, %g5
mov 0x300, %g2
sta %o1, [%g1] ASI_M_MMUREGS
sta %g0, [%g2] ASI_M_FLUSH_PROBE
sta %g5, [%g1] ASI_M_MMUREGS
retl
stb %g0, [%g3 + %lo(sun4dsmp_flush_tlb_spin)]
2: tst %g5
bne,a 2b
ldub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
b,a 1b
sun4dsmp_flush_tlb_range:
sethi %hi(sun4dsmp_flush_tlb_spin), %g3
1: ldstub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
tst %g5
bne 3f
mov SRMMU_CTX_REG, %g1
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
ld [%o0 + AOFF_mm_context], %o3
lda [%g1] ASI_M_MMUREGS, %g5
sethi %hi(~((1 << SRMMU_PGDIR_SHIFT) - 1)), %o4
sta %o3, [%g1] ASI_M_MMUREGS
and %o1, %o4, %o1
add %o1, 0x200, %o1
sta %g0, [%o1] ASI_M_FLUSH_PROBE
2: sub %o1, %o4, %o1
cmp %o1, %o2
blu,a 2b
sta %g0, [%o1] ASI_M_FLUSH_PROBE
sta %g5, [%g1] ASI_M_MMUREGS
retl
stb %g0, [%g3 + %lo(sun4dsmp_flush_tlb_spin)]
3: tst %g5
bne,a 3b
ldub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
b,a 1b
sun4dsmp_flush_tlb_page:
sethi %hi(sun4dsmp_flush_tlb_spin), %g3
1: ldstub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
tst %g5
bne 2f
mov SRMMU_CTX_REG, %g1
ld [%o0 + 0x00], %o0 /* XXX vma->vm_mm GROSS XXX */
ld [%o0 + AOFF_mm_context], %o3
lda [%g1] ASI_M_MMUREGS, %g5
and %o1, PAGE_MASK, %o1
sta %o3, [%g1] ASI_M_MMUREGS
sta %g0, [%o1] ASI_M_FLUSH_PROBE
sta %g5, [%g1] ASI_M_MMUREGS
retl
stb %g0, [%g3 + %lo(sun4dsmp_flush_tlb_spin)]
2: tst %g5
bne,a 2b
ldub [%g3 + %lo(sun4dsmp_flush_tlb_spin)], %g5
b,a 1b
nop
#endif