Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
85
include/asm-i386/mach-default/do_timer.h
Normal file
85
include/asm-i386/mach-default/do_timer.h
Normal file
@@ -0,0 +1,85 @@
|
||||
/* defines for inline arch setup functions */
|
||||
|
||||
#include <asm/apic.h>
|
||||
|
||||
/**
|
||||
* do_timer_interrupt_hook - hook into timer tick
|
||||
* @regs: standard registers from interrupt
|
||||
*
|
||||
* Description:
|
||||
* This hook is called immediately after the timer interrupt is ack'd.
|
||||
* It's primary purpose is to allow architectures that don't possess
|
||||
* individual per CPU clocks (like the CPU APICs supply) to broadcast the
|
||||
* timer interrupt as a means of triggering reschedules etc.
|
||||
**/
|
||||
|
||||
static inline void do_timer_interrupt_hook(struct pt_regs *regs)
|
||||
{
|
||||
do_timer(regs);
|
||||
#ifndef CONFIG_SMP
|
||||
update_process_times(user_mode(regs));
|
||||
#endif
|
||||
/*
|
||||
* In the SMP case we use the local APIC timer interrupt to do the
|
||||
* profiling, except when we simulate SMP mode on a uniprocessor
|
||||
* system, in that case we have to call the local interrupt handler.
|
||||
*/
|
||||
#ifndef CONFIG_X86_LOCAL_APIC
|
||||
profile_tick(CPU_PROFILING, regs);
|
||||
#else
|
||||
if (!using_apic_timer)
|
||||
smp_local_timer_interrupt(regs);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/* you can safely undefine this if you don't have the Neptune chipset */
|
||||
|
||||
#define BUGGY_NEPTUN_TIMER
|
||||
|
||||
/**
|
||||
* do_timer_overflow - process a detected timer overflow condition
|
||||
* @count: hardware timer interrupt count on overflow
|
||||
*
|
||||
* Description:
|
||||
* This call is invoked when the jiffies count has not incremented but
|
||||
* the hardware timer interrupt has. It means that a timer tick interrupt
|
||||
* came along while the previous one was pending, thus a tick was missed
|
||||
**/
|
||||
static inline int do_timer_overflow(int count)
|
||||
{
|
||||
int i;
|
||||
|
||||
spin_lock(&i8259A_lock);
|
||||
/*
|
||||
* This is tricky when I/O APICs are used;
|
||||
* see do_timer_interrupt().
|
||||
*/
|
||||
i = inb(0x20);
|
||||
spin_unlock(&i8259A_lock);
|
||||
|
||||
/* assumption about timer being IRQ0 */
|
||||
if (i & 0x01) {
|
||||
/*
|
||||
* We cannot detect lost timer interrupts ...
|
||||
* well, that's why we call them lost, don't we? :)
|
||||
* [hmm, on the Pentium and Alpha we can ... sort of]
|
||||
*/
|
||||
count -= LATCH;
|
||||
} else {
|
||||
#ifdef BUGGY_NEPTUN_TIMER
|
||||
/*
|
||||
* for the Neptun bug we know that the 'latch'
|
||||
* command doesn't latch the high and low value
|
||||
* of the counter atomically. Thus we have to
|
||||
* substract 256 from the counter
|
||||
* ... funny, isnt it? :)
|
||||
*/
|
||||
|
||||
count -= 256;
|
||||
#else
|
||||
printk("do_slow_gettimeoffset(): hardware timer problem?\n");
|
||||
#endif
|
||||
}
|
||||
return count;
|
||||
}
|
Reference in New Issue
Block a user