Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
489
security/selinux/ss/conditional.c
Normal file
489
security/selinux/ss/conditional.c
Normal file
@@ -0,0 +1,489 @@
|
||||
/* Authors: Karl MacMillan <kmacmillan@tresys.com>
|
||||
* Frank Mayer <mayerf@tresys.com>
|
||||
*
|
||||
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, version 2.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <asm/semaphore.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include "security.h"
|
||||
#include "conditional.h"
|
||||
|
||||
/*
|
||||
* cond_evaluate_expr evaluates a conditional expr
|
||||
* in reverse polish notation. It returns true (1), false (0),
|
||||
* or undefined (-1). Undefined occurs when the expression
|
||||
* exceeds the stack depth of COND_EXPR_MAXDEPTH.
|
||||
*/
|
||||
static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
|
||||
{
|
||||
|
||||
struct cond_expr *cur;
|
||||
int s[COND_EXPR_MAXDEPTH];
|
||||
int sp = -1;
|
||||
|
||||
for (cur = expr; cur != NULL; cur = cur->next) {
|
||||
switch (cur->expr_type) {
|
||||
case COND_BOOL:
|
||||
if (sp == (COND_EXPR_MAXDEPTH - 1))
|
||||
return -1;
|
||||
sp++;
|
||||
s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
|
||||
break;
|
||||
case COND_NOT:
|
||||
if (sp < 0)
|
||||
return -1;
|
||||
s[sp] = !s[sp];
|
||||
break;
|
||||
case COND_OR:
|
||||
if (sp < 1)
|
||||
return -1;
|
||||
sp--;
|
||||
s[sp] |= s[sp + 1];
|
||||
break;
|
||||
case COND_AND:
|
||||
if (sp < 1)
|
||||
return -1;
|
||||
sp--;
|
||||
s[sp] &= s[sp + 1];
|
||||
break;
|
||||
case COND_XOR:
|
||||
if (sp < 1)
|
||||
return -1;
|
||||
sp--;
|
||||
s[sp] ^= s[sp + 1];
|
||||
break;
|
||||
case COND_EQ:
|
||||
if (sp < 1)
|
||||
return -1;
|
||||
sp--;
|
||||
s[sp] = (s[sp] == s[sp + 1]);
|
||||
break;
|
||||
case COND_NEQ:
|
||||
if (sp < 1)
|
||||
return -1;
|
||||
sp--;
|
||||
s[sp] = (s[sp] != s[sp + 1]);
|
||||
break;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
return s[0];
|
||||
}
|
||||
|
||||
/*
|
||||
* evaluate_cond_node evaluates the conditional stored in
|
||||
* a struct cond_node and if the result is different than the
|
||||
* current state of the node it sets the rules in the true/false
|
||||
* list appropriately. If the result of the expression is undefined
|
||||
* all of the rules are disabled for safety.
|
||||
*/
|
||||
int evaluate_cond_node(struct policydb *p, struct cond_node *node)
|
||||
{
|
||||
int new_state;
|
||||
struct cond_av_list* cur;
|
||||
|
||||
new_state = cond_evaluate_expr(p, node->expr);
|
||||
if (new_state != node->cur_state) {
|
||||
node->cur_state = new_state;
|
||||
if (new_state == -1)
|
||||
printk(KERN_ERR "security: expression result was undefined - disabling all rules.\n");
|
||||
/* turn the rules on or off */
|
||||
for (cur = node->true_list; cur != NULL; cur = cur->next) {
|
||||
if (new_state <= 0) {
|
||||
cur->node->datum.specified &= ~AVTAB_ENABLED;
|
||||
} else {
|
||||
cur->node->datum.specified |= AVTAB_ENABLED;
|
||||
}
|
||||
}
|
||||
|
||||
for (cur = node->false_list; cur != NULL; cur = cur->next) {
|
||||
/* -1 or 1 */
|
||||
if (new_state) {
|
||||
cur->node->datum.specified &= ~AVTAB_ENABLED;
|
||||
} else {
|
||||
cur->node->datum.specified |= AVTAB_ENABLED;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cond_policydb_init(struct policydb *p)
|
||||
{
|
||||
p->bool_val_to_struct = NULL;
|
||||
p->cond_list = NULL;
|
||||
if (avtab_init(&p->te_cond_avtab))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cond_av_list_destroy(struct cond_av_list *list)
|
||||
{
|
||||
struct cond_av_list *cur, *next;
|
||||
for (cur = list; cur != NULL; cur = next) {
|
||||
next = cur->next;
|
||||
/* the avtab_ptr_t node is destroy by the avtab */
|
||||
kfree(cur);
|
||||
}
|
||||
}
|
||||
|
||||
static void cond_node_destroy(struct cond_node *node)
|
||||
{
|
||||
struct cond_expr *cur_expr, *next_expr;
|
||||
|
||||
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = next_expr) {
|
||||
next_expr = cur_expr->next;
|
||||
kfree(cur_expr);
|
||||
}
|
||||
cond_av_list_destroy(node->true_list);
|
||||
cond_av_list_destroy(node->false_list);
|
||||
kfree(node);
|
||||
}
|
||||
|
||||
static void cond_list_destroy(struct cond_node *list)
|
||||
{
|
||||
struct cond_node *next, *cur;
|
||||
|
||||
if (list == NULL)
|
||||
return;
|
||||
|
||||
for (cur = list; cur != NULL; cur = next) {
|
||||
next = cur->next;
|
||||
cond_node_destroy(cur);
|
||||
}
|
||||
}
|
||||
|
||||
void cond_policydb_destroy(struct policydb *p)
|
||||
{
|
||||
if (p->bool_val_to_struct != NULL)
|
||||
kfree(p->bool_val_to_struct);
|
||||
avtab_destroy(&p->te_cond_avtab);
|
||||
cond_list_destroy(p->cond_list);
|
||||
}
|
||||
|
||||
int cond_init_bool_indexes(struct policydb *p)
|
||||
{
|
||||
if (p->bool_val_to_struct)
|
||||
kfree(p->bool_val_to_struct);
|
||||
p->bool_val_to_struct = (struct cond_bool_datum**)
|
||||
kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum*), GFP_KERNEL);
|
||||
if (!p->bool_val_to_struct)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cond_destroy_bool(void *key, void *datum, void *p)
|
||||
{
|
||||
if (key)
|
||||
kfree(key);
|
||||
kfree(datum);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cond_index_bool(void *key, void *datum, void *datap)
|
||||
{
|
||||
struct policydb *p;
|
||||
struct cond_bool_datum *booldatum;
|
||||
|
||||
booldatum = datum;
|
||||
p = datap;
|
||||
|
||||
if (!booldatum->value || booldatum->value > p->p_bools.nprim)
|
||||
return -EINVAL;
|
||||
|
||||
p->p_bool_val_to_name[booldatum->value - 1] = key;
|
||||
p->bool_val_to_struct[booldatum->value -1] = booldatum;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bool_isvalid(struct cond_bool_datum *b)
|
||||
{
|
||||
if (!(b->state == 0 || b->state == 1))
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
|
||||
{
|
||||
char *key = NULL;
|
||||
struct cond_bool_datum *booldatum;
|
||||
u32 buf[3], len;
|
||||
int rc;
|
||||
|
||||
booldatum = kmalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
|
||||
if (!booldatum)
|
||||
return -1;
|
||||
memset(booldatum, 0, sizeof(struct cond_bool_datum));
|
||||
|
||||
rc = next_entry(buf, fp, sizeof buf);
|
||||
if (rc < 0)
|
||||
goto err;
|
||||
|
||||
booldatum->value = le32_to_cpu(buf[0]);
|
||||
booldatum->state = le32_to_cpu(buf[1]);
|
||||
|
||||
if (!bool_isvalid(booldatum))
|
||||
goto err;
|
||||
|
||||
len = le32_to_cpu(buf[2]);
|
||||
|
||||
key = kmalloc(len + 1, GFP_KERNEL);
|
||||
if (!key)
|
||||
goto err;
|
||||
rc = next_entry(key, fp, len);
|
||||
if (rc < 0)
|
||||
goto err;
|
||||
key[len] = 0;
|
||||
if (hashtab_insert(h, key, booldatum))
|
||||
goto err;
|
||||
|
||||
return 0;
|
||||
err:
|
||||
cond_destroy_bool(key, booldatum, NULL);
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list,
|
||||
struct cond_av_list *other)
|
||||
{
|
||||
struct cond_av_list *list, *last = NULL, *cur;
|
||||
struct avtab_key key;
|
||||
struct avtab_datum datum;
|
||||
struct avtab_node *node_ptr;
|
||||
int rc;
|
||||
u32 buf[1], i, len;
|
||||
u8 found;
|
||||
|
||||
*ret_list = NULL;
|
||||
|
||||
len = 0;
|
||||
rc = next_entry(buf, fp, sizeof buf);
|
||||
if (rc < 0)
|
||||
return -1;
|
||||
|
||||
len = le32_to_cpu(buf[0]);
|
||||
if (len == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
if (avtab_read_item(fp, &datum, &key))
|
||||
goto err;
|
||||
|
||||
/*
|
||||
* For type rules we have to make certain there aren't any
|
||||
* conflicting rules by searching the te_avtab and the
|
||||
* cond_te_avtab.
|
||||
*/
|
||||
if (datum.specified & AVTAB_TYPE) {
|
||||
if (avtab_search(&p->te_avtab, &key, AVTAB_TYPE)) {
|
||||
printk("security: type rule already exists outside of a conditional.");
|
||||
goto err;
|
||||
}
|
||||
/*
|
||||
* If we are reading the false list other will be a pointer to
|
||||
* the true list. We can have duplicate entries if there is only
|
||||
* 1 other entry and it is in our true list.
|
||||
*
|
||||
* If we are reading the true list (other == NULL) there shouldn't
|
||||
* be any other entries.
|
||||
*/
|
||||
if (other) {
|
||||
node_ptr = avtab_search_node(&p->te_cond_avtab, &key, AVTAB_TYPE);
|
||||
if (node_ptr) {
|
||||
if (avtab_search_node_next(node_ptr, AVTAB_TYPE)) {
|
||||
printk("security: too many conflicting type rules.");
|
||||
goto err;
|
||||
}
|
||||
found = 0;
|
||||
for (cur = other; cur != NULL; cur = cur->next) {
|
||||
if (cur->node == node_ptr) {
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
printk("security: conflicting type rules.");
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (avtab_search(&p->te_cond_avtab, &key, AVTAB_TYPE)) {
|
||||
printk("security: conflicting type rules when adding type rule for true.");
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, &key, &datum);
|
||||
if (!node_ptr) {
|
||||
printk("security: could not insert rule.");
|
||||
goto err;
|
||||
}
|
||||
|
||||
list = kmalloc(sizeof(struct cond_av_list), GFP_KERNEL);
|
||||
if (!list)
|
||||
goto err;
|
||||
memset(list, 0, sizeof(struct cond_av_list));
|
||||
|
||||
list->node = node_ptr;
|
||||
if (i == 0)
|
||||
*ret_list = list;
|
||||
else
|
||||
last->next = list;
|
||||
last = list;
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
err:
|
||||
cond_av_list_destroy(*ret_list);
|
||||
*ret_list = NULL;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
|
||||
{
|
||||
if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
|
||||
printk("security: conditional expressions uses unknown operator.\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (expr->bool > p->p_bools.nprim) {
|
||||
printk("security: conditional expressions uses unknown bool.\n");
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
|
||||
{
|
||||
u32 buf[2], len, i;
|
||||
int rc;
|
||||
struct cond_expr *expr = NULL, *last = NULL;
|
||||
|
||||
rc = next_entry(buf, fp, sizeof(u32));
|
||||
if (rc < 0)
|
||||
return -1;
|
||||
|
||||
node->cur_state = le32_to_cpu(buf[0]);
|
||||
|
||||
len = 0;
|
||||
rc = next_entry(buf, fp, sizeof(u32));
|
||||
if (rc < 0)
|
||||
return -1;
|
||||
|
||||
/* expr */
|
||||
len = le32_to_cpu(buf[0]);
|
||||
|
||||
for (i = 0; i < len; i++ ) {
|
||||
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
||||
if (rc < 0)
|
||||
goto err;
|
||||
|
||||
expr = kmalloc(sizeof(struct cond_expr), GFP_KERNEL);
|
||||
if (!expr) {
|
||||
goto err;
|
||||
}
|
||||
memset(expr, 0, sizeof(struct cond_expr));
|
||||
|
||||
expr->expr_type = le32_to_cpu(buf[0]);
|
||||
expr->bool = le32_to_cpu(buf[1]);
|
||||
|
||||
if (!expr_isvalid(p, expr)) {
|
||||
kfree(expr);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (i == 0) {
|
||||
node->expr = expr;
|
||||
} else {
|
||||
last->next = expr;
|
||||
}
|
||||
last = expr;
|
||||
}
|
||||
|
||||
if (cond_read_av_list(p, fp, &node->true_list, NULL) != 0)
|
||||
goto err;
|
||||
if (cond_read_av_list(p, fp, &node->false_list, node->true_list) != 0)
|
||||
goto err;
|
||||
return 0;
|
||||
err:
|
||||
cond_node_destroy(node);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int cond_read_list(struct policydb *p, void *fp)
|
||||
{
|
||||
struct cond_node *node, *last = NULL;
|
||||
u32 buf[1], i, len;
|
||||
int rc;
|
||||
|
||||
rc = next_entry(buf, fp, sizeof buf);
|
||||
if (rc < 0)
|
||||
return -1;
|
||||
|
||||
len = le32_to_cpu(buf[0]);
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
node = kmalloc(sizeof(struct cond_node), GFP_KERNEL);
|
||||
if (!node)
|
||||
goto err;
|
||||
memset(node, 0, sizeof(struct cond_node));
|
||||
|
||||
if (cond_read_node(p, node, fp) != 0)
|
||||
goto err;
|
||||
|
||||
if (i == 0) {
|
||||
p->cond_list = node;
|
||||
} else {
|
||||
last->next = node;
|
||||
}
|
||||
last = node;
|
||||
}
|
||||
return 0;
|
||||
err:
|
||||
cond_list_destroy(p->cond_list);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Determine whether additional permissions are granted by the conditional
|
||||
* av table, and if so, add them to the result
|
||||
*/
|
||||
void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
|
||||
{
|
||||
struct avtab_node *node;
|
||||
|
||||
if(!ctab || !key || !avd)
|
||||
return;
|
||||
|
||||
for(node = avtab_search_node(ctab, key, AVTAB_AV); node != NULL;
|
||||
node = avtab_search_node_next(node, AVTAB_AV)) {
|
||||
if ( (__u32) (AVTAB_ALLOWED|AVTAB_ENABLED) ==
|
||||
(node->datum.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
|
||||
avd->allowed |= avtab_allowed(&node->datum);
|
||||
if ( (__u32) (AVTAB_AUDITDENY|AVTAB_ENABLED) ==
|
||||
(node->datum.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
|
||||
/* Since a '0' in an auditdeny mask represents a
|
||||
* permission we do NOT want to audit (dontaudit), we use
|
||||
* the '&' operand to ensure that all '0's in the mask
|
||||
* are retained (much unlike the allow and auditallow cases).
|
||||
*/
|
||||
avd->auditdeny &= avtab_auditdeny(&node->datum);
|
||||
if ( (__u32) (AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
|
||||
(node->datum.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
|
||||
avd->auditallow |= avtab_auditallow(&node->datum);
|
||||
}
|
||||
return;
|
||||
}
|
Reference in New Issue
Block a user