Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
This commit is contained in:
Linus Torvalds
2005-04-16 15:20:36 -07:00
commit 1da177e4c3
17291 changed files with 6718755 additions and 0 deletions

18
sound/i2c/Makefile Normal file
View File

@@ -0,0 +1,18 @@
#
# Makefile for ALSA
# Copyright (c) 2001 by Jaroslav Kysela <perex@suse.cz>
#
snd-i2c-objs := i2c.o
snd-cs8427-objs := cs8427.o
snd-tea6330t-objs := tea6330t.o
ifeq ($(subst m,y,$(CONFIG_L3)),y)
obj-$(CONFIG_L3) += l3/
endif
obj-$(CONFIG_SND) += other/
# Toplevel Module Dependency
obj-$(CONFIG_SND_INTERWAVE_STB) += snd-tea6330t.o snd-i2c.o
obj-$(CONFIG_SND_ICE1712) += snd-cs8427.o snd-i2c.o

572
sound/i2c/cs8427.c Normal file
View File

@@ -0,0 +1,572 @@
/*
* Routines for control of the CS8427 via i2c bus
* IEC958 (S/PDIF) receiver & transmitter by Cirrus Logic
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/cs8427.h>
#include <sound/asoundef.h>
static void snd_cs8427_reset(snd_i2c_device_t *cs8427);
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("IEC958 (S/PDIF) receiver & transmitter by Cirrus Logic");
MODULE_LICENSE("GPL");
#define CS8427_ADDR (0x20>>1) /* fixed address */
typedef struct {
snd_pcm_substream_t *substream;
char hw_status[24]; /* hardware status */
char def_status[24]; /* default status */
char pcm_status[24]; /* PCM private status */
char hw_udata[32];
snd_kcontrol_t *pcm_ctl;
} cs8427_stream_t;
typedef struct {
unsigned char regmap[0x14]; /* map of first 1 + 13 registers */
unsigned int rate;
unsigned int reset_timeout;
cs8427_stream_t playback;
cs8427_stream_t capture;
} cs8427_t;
static unsigned char swapbits(unsigned char val)
{
int bit;
unsigned char res = 0;
for (bit = 0; bit < 8; bit++) {
res <<= 1;
res |= val & 1;
val >>= 1;
}
return res;
}
int snd_cs8427_reg_write(snd_i2c_device_t *device, unsigned char reg, unsigned char val)
{
int err;
unsigned char buf[2];
buf[0] = reg & 0x7f;
buf[1] = val;
if ((err = snd_i2c_sendbytes(device, buf, 2)) != 2) {
snd_printk("unable to send bytes 0x%02x:0x%02x to CS8427 (%i)\n", buf[0], buf[1], err);
return err < 0 ? err : -EIO;
}
return 0;
}
static int snd_cs8427_reg_read(snd_i2c_device_t *device, unsigned char reg)
{
int err;
unsigned char buf;
if ((err = snd_i2c_sendbytes(device, &reg, 1)) != 1) {
snd_printk("unable to send register 0x%x byte to CS8427\n", reg);
return err < 0 ? err : -EIO;
}
if ((err = snd_i2c_readbytes(device, &buf, 1)) != 1) {
snd_printk("unable to read register 0x%x byte from CS8427\n", reg);
return err < 0 ? err : -EIO;
}
return buf;
}
static int snd_cs8427_select_corudata(snd_i2c_device_t *device, int udata)
{
cs8427_t *chip = device->private_data;
int err;
udata = udata ? CS8427_BSEL : 0;
if (udata != (chip->regmap[CS8427_REG_CSDATABUF] & udata)) {
chip->regmap[CS8427_REG_CSDATABUF] &= ~CS8427_BSEL;
chip->regmap[CS8427_REG_CSDATABUF] |= udata;
err = snd_cs8427_reg_write(device, CS8427_REG_CSDATABUF, chip->regmap[CS8427_REG_CSDATABUF]);
if (err < 0)
return err;
}
return 0;
}
static int snd_cs8427_send_corudata(snd_i2c_device_t *device,
int udata,
unsigned char *ndata,
int count)
{
cs8427_t *chip = device->private_data;
char *hw_data = udata ? chip->playback.hw_udata : chip->playback.hw_status;
char data[32];
int err, idx;
if (!memcmp(hw_data, ndata, count))
return 0;
if ((err = snd_cs8427_select_corudata(device, udata)) < 0)
return err;
memcpy(hw_data, ndata, count);
if (udata) {
memset(data, 0, sizeof(data));
if (memcmp(hw_data, data, count) == 0) {
chip->regmap[CS8427_REG_UDATABUF] &= ~CS8427_UBMMASK;
chip->regmap[CS8427_REG_UDATABUF] |= CS8427_UBMZEROS | CS8427_EFTUI;
if ((err = snd_cs8427_reg_write(device, CS8427_REG_UDATABUF, chip->regmap[CS8427_REG_UDATABUF])) < 0)
return err;
return 0;
}
}
data[0] = CS8427_REG_AUTOINC | CS8427_REG_CORU_DATABUF;
for (idx = 0; idx < count; idx++)
data[idx + 1] = swapbits(ndata[idx]);
if (snd_i2c_sendbytes(device, data, count + 1) != count + 1)
return -EIO;
return 1;
}
static void snd_cs8427_free(snd_i2c_device_t *device)
{
kfree(device->private_data);
}
int snd_cs8427_create(snd_i2c_bus_t *bus,
unsigned char addr,
unsigned int reset_timeout,
snd_i2c_device_t **r_cs8427)
{
static unsigned char initvals1[] = {
CS8427_REG_CONTROL1 | CS8427_REG_AUTOINC,
/* CS8427_REG_CONTROL1: RMCK to OMCK, valid PCM audio, disable mutes, TCBL=output */
CS8427_SWCLK | CS8427_TCBLDIR,
/* CS8427_REG_CONTROL2: hold last valid audio sample, RMCK=256*Fs, normal stereo operation */
0x00,
/* CS8427_REG_DATAFLOW: output drivers normal operation, Tx<=serial, Rx=>serial */
CS8427_TXDSERIAL | CS8427_SPDAES3RECEIVER,
/* CS8427_REG_CLOCKSOURCE: Run off, CMCK=256*Fs, output time base = OMCK, input time base =
recovered input clock, recovered input clock source is ILRCK changed to AES3INPUT (workaround, see snd_cs8427_reset) */
CS8427_RXDILRCK,
/* CS8427_REG_SERIALINPUT: Serial audio input port data format = I2S, 24-bit, 64*Fsi */
CS8427_SIDEL | CS8427_SILRPOL,
/* CS8427_REG_SERIALOUTPUT: Serial audio output port data format = I2S, 24-bit, 64*Fsi */
CS8427_SODEL | CS8427_SOLRPOL,
};
static unsigned char initvals2[] = {
CS8427_REG_RECVERRMASK | CS8427_REG_AUTOINC,
/* CS8427_REG_RECVERRMASK: unmask the input PLL clock, V, confidence, biphase, parity status bits */
/* CS8427_UNLOCK | CS8427_V | CS8427_CONF | CS8427_BIP | CS8427_PAR, */
0xff, /* set everything */
/* CS8427_REG_CSDATABUF:
Registers 32-55 window to CS buffer
Inhibit D->E transfers from overwriting first 5 bytes of CS data.
Inhibit D->E transfers (all) of CS data.
Allow E->F transfer of CS data.
One byte mode; both A/B channels get same written CB data.
A channel info is output to chip's EMPH* pin. */
CS8427_CBMR | CS8427_DETCI,
/* CS8427_REG_UDATABUF:
Use internal buffer to transmit User (U) data.
Chip's U pin is an output.
Transmit all O's for user data.
Inhibit D->E transfers.
Inhibit E->F transfers. */
CS8427_UD | CS8427_EFTUI | CS8427_DETUI,
};
int err;
cs8427_t *chip;
snd_i2c_device_t *device;
unsigned char buf[24];
if ((err = snd_i2c_device_create(bus, "CS8427", CS8427_ADDR | (addr & 7), &device)) < 0)
return err;
chip = device->private_data = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
snd_i2c_device_free(device);
return -ENOMEM;
}
device->private_free = snd_cs8427_free;
snd_i2c_lock(bus);
if ((err = snd_cs8427_reg_read(device, CS8427_REG_ID_AND_VER)) != CS8427_VER8427A) {
snd_i2c_unlock(bus);
snd_printk("unable to find CS8427 signature (expected 0x%x, read 0x%x), initialization is not completed\n", CS8427_VER8427A, err);
return -EFAULT;
}
/* turn off run bit while making changes to configuration */
if ((err = snd_cs8427_reg_write(device, CS8427_REG_CLOCKSOURCE, 0x00)) < 0)
goto __fail;
/* send initial values */
memcpy(chip->regmap + (initvals1[0] & 0x7f), initvals1 + 1, 6);
if ((err = snd_i2c_sendbytes(device, initvals1, 7)) != 7) {
err = err < 0 ? err : -EIO;
goto __fail;
}
/* Turn off CS8427 interrupt stuff that is not used in hardware */
memset(buf, 0, 7);
/* from address 9 to 15 */
buf[0] = 9; /* register */
if ((err = snd_i2c_sendbytes(device, buf, 7)) != 7)
goto __fail;
/* send transfer initialization sequence */
memcpy(chip->regmap + (initvals2[0] & 0x7f), initvals2 + 1, 3);
if ((err = snd_i2c_sendbytes(device, initvals2, 4)) != 4) {
err = err < 0 ? err : -EIO;
goto __fail;
}
/* write default channel status bytes */
buf[0] = ((unsigned char)(SNDRV_PCM_DEFAULT_CON_SPDIF >> 0));
buf[1] = ((unsigned char)(SNDRV_PCM_DEFAULT_CON_SPDIF >> 8));
buf[2] = ((unsigned char)(SNDRV_PCM_DEFAULT_CON_SPDIF >> 16));
buf[3] = ((unsigned char)(SNDRV_PCM_DEFAULT_CON_SPDIF >> 24));
memset(buf + 4, 0, 24 - 4);
if (snd_cs8427_send_corudata(device, 0, buf, 24) < 0)
goto __fail;
memcpy(chip->playback.def_status, buf, 24);
memcpy(chip->playback.pcm_status, buf, 24);
snd_i2c_unlock(bus);
/* turn on run bit and rock'n'roll */
if (reset_timeout < 1)
reset_timeout = 1;
chip->reset_timeout = reset_timeout;
snd_cs8427_reset(device);
#if 0 // it's nice for read tests
{
char buf[128];
int xx;
buf[0] = 0x81;
snd_i2c_sendbytes(device, buf, 1);
snd_i2c_readbytes(device, buf, 127);
for (xx = 0; xx < 127; xx++)
printk("reg[0x%x] = 0x%x\n", xx+1, buf[xx]);
}
#endif
if (r_cs8427)
*r_cs8427 = device;
return 0;
__fail:
snd_i2c_unlock(bus);
snd_i2c_device_free(device);
return err < 0 ? err : -EIO;
}
/*
* Reset the chip using run bit, also lock PLL using ILRCK and
* put back AES3INPUT. This workaround is described in latest
* CS8427 datasheet, otherwise TXDSERIAL will not work.
*/
static void snd_cs8427_reset(snd_i2c_device_t *cs8427)
{
cs8427_t *chip;
unsigned long end_time;
int data;
snd_assert(cs8427, return);
chip = cs8427->private_data;
snd_i2c_lock(cs8427->bus);
chip->regmap[CS8427_REG_CLOCKSOURCE] &= ~(CS8427_RUN | CS8427_RXDMASK);
snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]);
udelay(200);
chip->regmap[CS8427_REG_CLOCKSOURCE] |= CS8427_RUN | CS8427_RXDILRCK;
snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]);
udelay(200);
snd_i2c_unlock(cs8427->bus);
end_time = jiffies + chip->reset_timeout;
while (time_after_eq(end_time, jiffies)) {
snd_i2c_lock(cs8427->bus);
data = snd_cs8427_reg_read(cs8427, CS8427_REG_RECVERRORS);
snd_i2c_unlock(cs8427->bus);
if (!(data & CS8427_UNLOCK))
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
}
snd_i2c_lock(cs8427->bus);
chip->regmap[CS8427_REG_CLOCKSOURCE] &= ~CS8427_RXDMASK;
chip->regmap[CS8427_REG_CLOCKSOURCE] |= CS8427_RXDAES3INPUT;
snd_cs8427_reg_write(cs8427, CS8427_REG_CLOCKSOURCE, chip->regmap[CS8427_REG_CLOCKSOURCE]);
snd_i2c_unlock(cs8427->bus);
}
static int snd_cs8427_in_status_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int snd_cs8427_in_status_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
snd_i2c_device_t *device = snd_kcontrol_chip(kcontrol);
int data;
snd_i2c_lock(device->bus);
data = snd_cs8427_reg_read(device, kcontrol->private_value);
snd_i2c_unlock(device->bus);
if (data < 0)
return data;
ucontrol->value.integer.value[0] = data;
return 0;
}
static int snd_cs8427_qsubcode_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = 10;
return 0;
}
static int snd_cs8427_qsubcode_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
snd_i2c_device_t *device = snd_kcontrol_chip(kcontrol);
unsigned char reg = CS8427_REG_QSUBCODE;
int err;
snd_i2c_lock(device->bus);
if ((err = snd_i2c_sendbytes(device, &reg, 1)) != 1) {
snd_printk("unable to send register 0x%x byte to CS8427\n", reg);
snd_i2c_unlock(device->bus);
return err < 0 ? err : -EIO;
}
if ((err = snd_i2c_readbytes(device, ucontrol->value.bytes.data, 10)) != 10) {
snd_printk("unable to read Q-subcode bytes from CS8427\n");
snd_i2c_unlock(device->bus);
return err < 0 ? err : -EIO;
}
snd_i2c_unlock(device->bus);
return 0;
}
static int snd_cs8427_spdif_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_cs8427_spdif_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
snd_i2c_device_t *device = snd_kcontrol_chip(kcontrol);
cs8427_t *chip = device->private_data;
snd_i2c_lock(device->bus);
memcpy(ucontrol->value.iec958.status, chip->playback.def_status, 24);
snd_i2c_unlock(device->bus);
return 0;
}
static int snd_cs8427_spdif_put(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
snd_i2c_device_t *device = snd_kcontrol_chip(kcontrol);
cs8427_t *chip = device->private_data;
unsigned char *status = kcontrol->private_value ? chip->playback.pcm_status : chip->playback.def_status;
snd_pcm_runtime_t *runtime = chip->playback.substream ? chip->playback.substream->runtime : NULL;
int err, change;
snd_i2c_lock(device->bus);
change = memcmp(ucontrol->value.iec958.status, status, 24) != 0;
memcpy(status, ucontrol->value.iec958.status, 24);
if (change && (kcontrol->private_value ? runtime != NULL : runtime == NULL)) {
err = snd_cs8427_send_corudata(device, 0, status, 24);
if (err < 0)
change = err;
}
snd_i2c_unlock(device->bus);
return change;
}
static int snd_cs8427_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_cs8427_spdif_mask_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
memset(ucontrol->value.iec958.status, 0xff, 24);
return 0;
}
static snd_kcontrol_new_t snd_cs8427_iec958_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.info = snd_cs8427_in_status_info,
.name = "IEC958 CS8427 Input Status",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.get = snd_cs8427_in_status_get,
.private_value = 15,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.info = snd_cs8427_in_status_info,
.name = "IEC958 CS8427 Error Status",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.get = snd_cs8427_in_status_get,
.private_value = 16,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.info = snd_cs8427_spdif_mask_info,
.get = snd_cs8427_spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_cs8427_spdif_info,
.get = snd_cs8427_spdif_get,
.put = snd_cs8427_spdif_put,
.private_value = 0
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_cs8427_spdif_info,
.get = snd_cs8427_spdif_get,
.put = snd_cs8427_spdif_put,
.private_value = 1
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.info = snd_cs8427_qsubcode_info,
.name = "IEC958 Q-subcode Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.get = snd_cs8427_qsubcode_get
}};
int snd_cs8427_iec958_build(snd_i2c_device_t *cs8427,
snd_pcm_substream_t *play_substream,
snd_pcm_substream_t *cap_substream)
{
cs8427_t *chip = cs8427->private_data;
snd_kcontrol_t *kctl;
unsigned int idx;
int err;
snd_assert(play_substream && cap_substream, return -EINVAL);
for (idx = 0; idx < ARRAY_SIZE(snd_cs8427_iec958_controls); idx++) {
kctl = snd_ctl_new1(&snd_cs8427_iec958_controls[idx], cs8427);
if (kctl == NULL)
return -ENOMEM;
kctl->id.device = play_substream->pcm->device;
kctl->id.subdevice = play_substream->number;
err = snd_ctl_add(cs8427->bus->card, kctl);
if (err < 0)
return err;
if (!strcmp(kctl->id.name, SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM)))
chip->playback.pcm_ctl = kctl;
}
chip->playback.substream = play_substream;
chip->capture.substream = cap_substream;
snd_assert(chip->playback.pcm_ctl, return -EIO);
return 0;
}
int snd_cs8427_iec958_active(snd_i2c_device_t *cs8427, int active)
{
cs8427_t *chip;
snd_assert(cs8427, return -ENXIO);
chip = cs8427->private_data;
if (active)
memcpy(chip->playback.pcm_status, chip->playback.def_status, 24);
chip->playback.pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(cs8427->bus->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &chip->playback.pcm_ctl->id);
return 0;
}
int snd_cs8427_iec958_pcm(snd_i2c_device_t *cs8427, unsigned int rate)
{
cs8427_t *chip;
char *status;
int err, reset;
snd_assert(cs8427, return -ENXIO);
chip = cs8427->private_data;
status = chip->playback.pcm_status;
snd_i2c_lock(cs8427->bus);
if (status[0] & IEC958_AES0_PROFESSIONAL) {
status[0] &= ~IEC958_AES0_PRO_FS;
switch (rate) {
case 32000: status[0] |= IEC958_AES0_PRO_FS_32000; break;
case 44100: status[0] |= IEC958_AES0_PRO_FS_44100; break;
case 48000: status[0] |= IEC958_AES0_PRO_FS_48000; break;
default: status[0] |= IEC958_AES0_PRO_FS_NOTID; break;
}
} else {
status[3] &= ~IEC958_AES3_CON_FS;
switch (rate) {
case 32000: status[3] |= IEC958_AES3_CON_FS_32000; break;
case 44100: status[3] |= IEC958_AES3_CON_FS_44100; break;
case 48000: status[3] |= IEC958_AES3_CON_FS_48000; break;
}
}
err = snd_cs8427_send_corudata(cs8427, 0, status, 24);
if (err > 0)
snd_ctl_notify(cs8427->bus->card,
SNDRV_CTL_EVENT_MASK_VALUE,
&chip->playback.pcm_ctl->id);
reset = chip->rate != rate;
chip->rate = rate;
snd_i2c_unlock(cs8427->bus);
if (reset)
snd_cs8427_reset(cs8427);
return err < 0 ? err : 0;
}
static int __init alsa_cs8427_module_init(void)
{
return 0;
}
static void __exit alsa_cs8427_module_exit(void)
{
}
module_init(alsa_cs8427_module_init)
module_exit(alsa_cs8427_module_exit)
EXPORT_SYMBOL(snd_cs8427_create);
EXPORT_SYMBOL(snd_cs8427_reset);
EXPORT_SYMBOL(snd_cs8427_reg_write);
EXPORT_SYMBOL(snd_cs8427_iec958_build);
EXPORT_SYMBOL(snd_cs8427_iec958_active);
EXPORT_SYMBOL(snd_cs8427_iec958_pcm);

333
sound/i2c/i2c.c Normal file
View File

@@ -0,0 +1,333 @@
/*
* Generic i2c interface for ALSA
*
* (c) 1998 Gerd Knorr <kraxel@cs.tu-berlin.de>
* Modified for the ALSA driver by Jaroslav Kysela <perex@suse.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <sound/core.h>
#include <sound/i2c.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Generic i2c interface for ALSA");
MODULE_LICENSE("GPL");
static int snd_i2c_bit_sendbytes(snd_i2c_device_t *device, unsigned char *bytes, int count);
static int snd_i2c_bit_readbytes(snd_i2c_device_t *device, unsigned char *bytes, int count);
static int snd_i2c_bit_probeaddr(snd_i2c_bus_t *bus, unsigned short addr);
static snd_i2c_ops_t snd_i2c_bit_ops = {
.sendbytes = snd_i2c_bit_sendbytes,
.readbytes = snd_i2c_bit_readbytes,
.probeaddr = snd_i2c_bit_probeaddr,
};
static int snd_i2c_bus_free(snd_i2c_bus_t *bus)
{
snd_i2c_bus_t *slave;
snd_i2c_device_t *device;
snd_assert(bus != NULL, return -EINVAL);
while (!list_empty(&bus->devices)) {
device = snd_i2c_device(bus->devices.next);
snd_i2c_device_free(device);
}
if (bus->master)
list_del(&bus->buses);
else {
while (!list_empty(&bus->buses)) {
slave = snd_i2c_slave_bus(bus->buses.next);
snd_device_free(bus->card, slave);
}
}
if (bus->private_free)
bus->private_free(bus);
kfree(bus);
return 0;
}
static int snd_i2c_bus_dev_free(snd_device_t *device)
{
snd_i2c_bus_t *bus = device->device_data;
return snd_i2c_bus_free(bus);
}
int snd_i2c_bus_create(snd_card_t *card, const char *name, snd_i2c_bus_t *master, snd_i2c_bus_t **ri2c)
{
snd_i2c_bus_t *bus;
int err;
static snd_device_ops_t ops = {
.dev_free = snd_i2c_bus_dev_free,
};
*ri2c = NULL;
bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
if (bus == NULL)
return -ENOMEM;
init_MUTEX(&bus->lock_mutex);
INIT_LIST_HEAD(&bus->devices);
INIT_LIST_HEAD(&bus->buses);
bus->card = card;
bus->ops = &snd_i2c_bit_ops;
if (master) {
list_add_tail(&bus->buses, &master->buses);
bus->master = master;
}
strlcpy(bus->name, name, sizeof(bus->name));
if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &ops)) < 0) {
snd_i2c_bus_free(bus);
return err;
}
*ri2c = bus;
return 0;
}
int snd_i2c_device_create(snd_i2c_bus_t *bus, const char *name, unsigned char addr, snd_i2c_device_t **rdevice)
{
snd_i2c_device_t *device;
*rdevice = NULL;
snd_assert(bus != NULL, return -EINVAL);
device = kcalloc(1, sizeof(*device), GFP_KERNEL);
if (device == NULL)
return -ENOMEM;
device->addr = addr;
strlcpy(device->name, name, sizeof(device->name));
list_add_tail(&device->list, &bus->devices);
device->bus = bus;
*rdevice = device;
return 0;
}
int snd_i2c_device_free(snd_i2c_device_t *device)
{
if (device->bus)
list_del(&device->list);
if (device->private_free)
device->private_free(device);
kfree(device);
return 0;
}
int snd_i2c_sendbytes(snd_i2c_device_t *device, unsigned char *bytes, int count)
{
return device->bus->ops->sendbytes(device, bytes, count);
}
int snd_i2c_readbytes(snd_i2c_device_t *device, unsigned char *bytes, int count)
{
return device->bus->ops->readbytes(device, bytes, count);
}
int snd_i2c_probeaddr(snd_i2c_bus_t *bus, unsigned short addr)
{
return bus->ops->probeaddr(bus, addr);
}
/*
* bit-operations
*/
static inline void snd_i2c_bit_hw_start(snd_i2c_bus_t *bus)
{
if (bus->hw_ops.bit->start)
bus->hw_ops.bit->start(bus);
}
static inline void snd_i2c_bit_hw_stop(snd_i2c_bus_t *bus)
{
if (bus->hw_ops.bit->stop)
bus->hw_ops.bit->stop(bus);
}
static void snd_i2c_bit_direction(snd_i2c_bus_t *bus, int clock, int data)
{
if (bus->hw_ops.bit->direction)
bus->hw_ops.bit->direction(bus, clock, data);
}
static void snd_i2c_bit_set(snd_i2c_bus_t *bus, int clock, int data)
{
bus->hw_ops.bit->setlines(bus, clock, data);
}
#if 0
static int snd_i2c_bit_clock(snd_i2c_bus_t *bus)
{
if (bus->hw_ops.bit->getclock)
return bus->hw_ops.bit->getclock(bus);
return -ENXIO;
}
#endif
static int snd_i2c_bit_data(snd_i2c_bus_t *bus, int ack)
{
return bus->hw_ops.bit->getdata(bus, ack);
}
static void snd_i2c_bit_start(snd_i2c_bus_t *bus)
{
snd_i2c_bit_hw_start(bus);
snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */
snd_i2c_bit_set(bus, 1, 1);
snd_i2c_bit_set(bus, 1, 0);
snd_i2c_bit_set(bus, 0, 0);
}
static void snd_i2c_bit_stop(snd_i2c_bus_t *bus)
{
snd_i2c_bit_set(bus, 0, 0);
snd_i2c_bit_set(bus, 1, 0);
snd_i2c_bit_set(bus, 1, 1);
snd_i2c_bit_hw_stop(bus);
}
static void snd_i2c_bit_send(snd_i2c_bus_t *bus, int data)
{
snd_i2c_bit_set(bus, 0, data);
snd_i2c_bit_set(bus, 1, data);
snd_i2c_bit_set(bus, 0, data);
}
static int snd_i2c_bit_ack(snd_i2c_bus_t *bus)
{
int ack;
snd_i2c_bit_set(bus, 0, 1);
snd_i2c_bit_set(bus, 1, 1);
snd_i2c_bit_direction(bus, 1, 0); /* SCL - wr, SDA - rd */
ack = snd_i2c_bit_data(bus, 1);
snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */
snd_i2c_bit_set(bus, 0, 1);
return ack ? -EIO : 0;
}
static int snd_i2c_bit_sendbyte(snd_i2c_bus_t *bus, unsigned char data)
{
int i, err;
for (i = 7; i >= 0; i--)
snd_i2c_bit_send(bus, !!(data & (1 << i)));
if ((err = snd_i2c_bit_ack(bus)) < 0)
return err;
return 0;
}
static int snd_i2c_bit_readbyte(snd_i2c_bus_t *bus, int last)
{
int i;
unsigned char data = 0;
snd_i2c_bit_set(bus, 0, 1);
snd_i2c_bit_direction(bus, 1, 0); /* SCL - wr, SDA - rd */
for (i = 7; i >= 0; i--) {
snd_i2c_bit_set(bus, 1, 1);
if (snd_i2c_bit_data(bus, 0))
data |= (1 << i);
snd_i2c_bit_set(bus, 0, 1);
}
snd_i2c_bit_direction(bus, 1, 1); /* SCL - wr, SDA - wr */
snd_i2c_bit_send(bus, !!last);
return data;
}
static int snd_i2c_bit_sendbytes(snd_i2c_device_t *device, unsigned char *bytes, int count)
{
snd_i2c_bus_t *bus = device->bus;
int err, res = 0;
if (device->flags & SND_I2C_DEVICE_ADDRTEN)
return -EIO; /* not yet implemented */
snd_i2c_bit_start(bus);
if ((err = snd_i2c_bit_sendbyte(bus, device->addr << 1)) < 0) {
snd_i2c_bit_hw_stop(bus);
return err;
}
while (count-- > 0) {
if ((err = snd_i2c_bit_sendbyte(bus, *bytes++)) < 0) {
snd_i2c_bit_hw_stop(bus);
return err;
}
res++;
}
snd_i2c_bit_stop(bus);
return res;
}
static int snd_i2c_bit_readbytes(snd_i2c_device_t *device, unsigned char *bytes, int count)
{
snd_i2c_bus_t *bus = device->bus;
int err, res = 0;
if (device->flags & SND_I2C_DEVICE_ADDRTEN)
return -EIO; /* not yet implemented */
snd_i2c_bit_start(bus);
if ((err = snd_i2c_bit_sendbyte(bus, (device->addr << 1) | 1)) < 0) {
snd_i2c_bit_hw_stop(bus);
return err;
}
while (count-- > 0) {
if ((err = snd_i2c_bit_readbyte(bus, count == 0)) < 0) {
snd_i2c_bit_hw_stop(bus);
return err;
}
*bytes++ = (unsigned char)err;
res++;
}
snd_i2c_bit_stop(bus);
return res;
}
static int snd_i2c_bit_probeaddr(snd_i2c_bus_t *bus, unsigned short addr)
{
int err;
if (addr & 0x8000) /* 10-bit address */
return -EIO; /* not yet implemented */
if (addr & 0x7f80) /* invalid address */
return -EINVAL;
snd_i2c_bit_start(bus);
err = snd_i2c_bit_sendbyte(bus, addr << 1);
snd_i2c_bit_stop(bus);
return err;
}
EXPORT_SYMBOL(snd_i2c_bus_create);
EXPORT_SYMBOL(snd_i2c_device_create);
EXPORT_SYMBOL(snd_i2c_device_free);
EXPORT_SYMBOL(snd_i2c_sendbytes);
EXPORT_SYMBOL(snd_i2c_readbytes);
EXPORT_SYMBOL(snd_i2c_probeaddr);
static int __init alsa_i2c_init(void)
{
return 0;
}
static void __exit alsa_i2c_exit(void)
{
}
module_init(alsa_i2c_init)
module_exit(alsa_i2c_exit)

8
sound/i2c/l3/Makefile Normal file
View File

@@ -0,0 +1,8 @@
#
# Makefile for ALSA
#
snd-uda1341-objs := uda1341.o
# Module Dependency
obj-$(CONFIG_SND_SA11XX_UDA1341) += snd-uda1341.o

830
sound/i2c/l3/uda1341.c Normal file
View File

@@ -0,0 +1,830 @@
/*
* Philips UDA1341 mixer device driver
* Copyright (c) 2002 Tomas Kasparek <tomas.kasparek@seznam.cz>
*
* Portions are Copyright (C) 2000 Lernout & Hauspie Speech Products, N.V.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License.
*
* History:
*
* 2002-03-13 Tomas Kasparek initial release - based on uda1341.c from OSS
* 2002-03-28 Tomas Kasparek basic mixer is working (volume, bass, treble)
* 2002-03-30 Tomas Kasparek proc filesystem support, complete mixer and DSP
* features support
* 2002-04-12 Tomas Kasparek proc interface update, code cleanup
* 2002-05-12 Tomas Kasparek another code cleanup
*/
/* $Id: uda1341.c,v 1.15 2005/01/03 12:05:20 tiwai Exp $ */
#include <sound/driver.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#include <asm/uaccess.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <sound/info.h>
#include <linux/l3/l3.h>
#include <sound/uda1341.h>
/* {{{ HW regs definition */
#define STAT0 0x00
#define STAT1 0x80
#define STAT_MASK 0x80
#define DATA0_0 0x00
#define DATA0_1 0x40
#define DATA0_2 0x80
#define DATA_MASK 0xc0
#define IS_DATA0(x) ((x) >= data0_0 && (x) <= data0_2)
#define IS_DATA1(x) ((x) == data1)
#define IS_STATUS(x) ((x) == stat0 || (x) == stat1)
#define IS_EXTEND(x) ((x) >= ext0 && (x) <= ext6)
/* }}} */
enum uda1341_regs_names {
stat0,
stat1,
data0_0,
data0_1,
data0_2,
data1,
ext0,
ext1,
ext2,
empty,
ext4,
ext5,
ext6,
uda1341_reg_last,
};
const char *uda1341_reg_names[] = {
"stat 0 ",
"stat 1 ",
"data 00",
"data 01",
"data 02",
"data 1 ",
"ext 0",
"ext 1",
"ext 2",
"empty",
"ext 4",
"ext 5",
"ext 6",
};
const int uda1341_enum_items[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, //peak - before/after
4, //deemp - none/32/44.1/48
0,
4, //filter - flat/min/min/max
0, 0, 0,
4, //mixer - differ/line/mic/mixer
0, 0, 0, 0, 0,
};
const char ** uda1341_enum_names[] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
peak_names, //peak - before/after
deemp_names, //deemp - none/32/44.1/48
NULL,
filter_names, //filter - flat/min/min/max
NULL, NULL, NULL,
mixer_names, //mixer - differ/line/mic/mixer
NULL, NULL, NULL, NULL, NULL,
};
typedef int uda1341_cfg[CMD_LAST];
typedef struct uda1341 uda1341_t;
struct uda1341 {
int (*write) (struct l3_client *uda1341, unsigned short reg, unsigned short val);
int (*read) (struct l3_client *uda1341, unsigned short reg);
unsigned char regs[uda1341_reg_last];
int active;
spinlock_t reg_lock;
snd_card_t *card;
uda1341_cfg cfg;
#ifdef CONFIG_PM
unsigned char suspend_regs[uda1341_reg_last];
uda1341_cfg suspend_cfg;
#endif
};
//hack for ALSA magic casting
typedef struct l3_client l3_client_t;
/* transfer 8bit integer into string with binary representation */
void int2str_bin8(uint8_t val, char *buf){
const int size = sizeof(val) * 8;
int i;
for (i= 0; i < size; i++){
*(buf++) = (val >> (size - 1)) ? '1' : '0';
val <<= 1;
}
*buf = '\0'; //end the string with zero
}
/* {{{ HW manipulation routines */
int snd_uda1341_codec_write(struct l3_client *clnt, unsigned short reg, unsigned short val)
{
struct uda1341 *uda = clnt->driver_data;
unsigned char buf[2] = { 0xc0, 0xe0 }; // for EXT addressing
int err = 0;
uda->regs[reg] = val;
if (uda->active) {
if (IS_DATA0(reg)) {
err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)&val, 1);
} else if (IS_DATA1(reg)) {
err = l3_write(clnt, UDA1341_DATA1, (const unsigned char *)&val, 1);
} else if (IS_STATUS(reg)) {
err = l3_write(clnt, UDA1341_STATUS, (const unsigned char *)&val, 1);
} else if (IS_EXTEND(reg)) {
buf[0] |= (reg - ext0) & 0x7; //EXT address
buf[1] |= val; //EXT data
err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)buf, 2);
}
} else
printk(KERN_ERR "UDA1341 codec not active!\n");
return err;
}
int snd_uda1341_codec_read(struct l3_client *clnt, unsigned short reg)
{
unsigned char val;
int err;
err = l3_read(clnt, reg, &val, 1);
if (err == 1)
// use just 6bits - the rest is address of the reg
return val & 63;
return err < 0 ? err : -EIO;
}
static inline int snd_uda1341_valid_reg(struct l3_client *clnt, unsigned short reg)
{
return reg < uda1341_reg_last;
}
int snd_uda1341_update_bits(struct l3_client *clnt, unsigned short reg, unsigned short mask,
unsigned short shift, unsigned short value, int flush)
{
int change;
unsigned short old, new;
struct uda1341 *uda = clnt->driver_data;
#if 0
printk(KERN_DEBUG "update_bits: reg: %s mask: %d shift: %d val: %d\n",
uda1341_reg_names[reg], mask, shift, value);
#endif
if (!snd_uda1341_valid_reg(clnt, reg))
return -EINVAL;
spin_lock(&uda->reg_lock);
old = uda->regs[reg];
new = (old & ~(mask << shift)) | (value << shift);
change = old != new;
if (change) {
if (flush) uda->write(clnt, reg, new);
uda->regs[reg] = new;
}
spin_unlock(&uda->reg_lock);
return change;
}
int snd_uda1341_cfg_write(struct l3_client *clnt, unsigned short what,
unsigned short value, int flush)
{
struct uda1341 *uda = clnt->driver_data;
int ret = 0;
#ifdef CONFIG_PM
int reg;
#endif
#if 0
printk(KERN_DEBUG "cfg_write what: %d value: %d\n", what, value);
#endif
uda->cfg[what] = value;
switch(what) {
case CMD_RESET:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, 1, flush); // MUTE
ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 1, flush); // RESET
ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 0, flush); // RESTORE
uda->cfg[CMD_RESET]=0;
break;
case CMD_FS:
ret = snd_uda1341_update_bits(clnt, stat0, 3, 4, value, flush);
break;
case CMD_FORMAT:
ret = snd_uda1341_update_bits(clnt, stat0, 7, 1, value, flush);
break;
case CMD_OGAIN:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 6, value, flush);
break;
case CMD_IGAIN:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 5, value, flush);
break;
case CMD_DAC:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 0, value, flush);
break;
case CMD_ADC:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 1, value, flush);
break;
case CMD_VOLUME:
ret = snd_uda1341_update_bits(clnt, data0_0, 63, 0, value, flush);
break;
case CMD_BASS:
ret = snd_uda1341_update_bits(clnt, data0_1, 15, 2, value, flush);
break;
case CMD_TREBBLE:
ret = snd_uda1341_update_bits(clnt, data0_1, 3, 0, value, flush);
break;
case CMD_PEAK:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 5, value, flush);
break;
case CMD_DEEMP:
ret = snd_uda1341_update_bits(clnt, data0_2, 3, 3, value, flush);
break;
case CMD_MUTE:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, value, flush);
break;
case CMD_FILTER:
ret = snd_uda1341_update_bits(clnt, data0_2, 3, 0, value, flush);
break;
case CMD_CH1:
ret = snd_uda1341_update_bits(clnt, ext0, 31, 0, value, flush);
break;
case CMD_CH2:
ret = snd_uda1341_update_bits(clnt, ext1, 31, 0, value, flush);
break;
case CMD_MIC:
ret = snd_uda1341_update_bits(clnt, ext2, 7, 2, value, flush);
break;
case CMD_MIXER:
ret = snd_uda1341_update_bits(clnt, ext2, 3, 0, value, flush);
break;
case CMD_AGC:
ret = snd_uda1341_update_bits(clnt, ext4, 1, 4, value, flush);
break;
case CMD_IG:
ret = snd_uda1341_update_bits(clnt, ext4, 3, 0, value & 0x3, flush);
ret = snd_uda1341_update_bits(clnt, ext5, 31, 0, value >> 2, flush);
break;
case CMD_AGC_TIME:
ret = snd_uda1341_update_bits(clnt, ext6, 7, 2, value, flush);
break;
case CMD_AGC_LEVEL:
ret = snd_uda1341_update_bits(clnt, ext6, 3, 0, value, flush);
break;
#ifdef CONFIG_PM
case CMD_SUSPEND:
for (reg = stat0; reg < uda1341_reg_last; reg++)
uda->suspend_regs[reg] = uda->regs[reg];
for (reg = 0; reg < CMD_LAST; reg++)
uda->suspend_cfg[reg] = uda->cfg[reg];
break;
case CMD_RESUME:
for (reg = stat0; reg < uda1341_reg_last; reg++)
snd_uda1341_codec_write(clnt, reg, uda->suspend_regs[reg]);
for (reg = 0; reg < CMD_LAST; reg++)
uda->cfg[reg] = uda->suspend_cfg[reg];
break;
#endif
default:
ret = -EINVAL;
break;
}
if (!uda->active)
printk(KERN_ERR "UDA1341 codec not active!\n");
return ret;
}
/* }}} */
/* {{{ Proc interface */
static void snd_uda1341_proc_read(snd_info_entry_t *entry,
snd_info_buffer_t * buffer)
{
struct l3_client *clnt = entry->private_data;
struct uda1341 *uda = clnt->driver_data;
int peak;
peak = snd_uda1341_codec_read(clnt, UDA1341_DATA1);
if (peak < 0)
peak = 0;
snd_iprintf(buffer, "%s\n\n", uda->card->longname);
// for information about computed values see UDA1341TS datasheet pages 15 - 21
snd_iprintf(buffer, "DAC power : %s\n", uda->cfg[CMD_DAC] ? "on" : "off");
snd_iprintf(buffer, "ADC power : %s\n", uda->cfg[CMD_ADC] ? "on" : "off");
snd_iprintf(buffer, "Clock frequency : %s\n", fs_names[uda->cfg[CMD_FS]]);
snd_iprintf(buffer, "Data format : %s\n\n", format_names[uda->cfg[CMD_FORMAT]]);
snd_iprintf(buffer, "Filter mode : %s\n", filter_names[uda->cfg[CMD_FILTER]]);
snd_iprintf(buffer, "Mixer mode : %s\n", mixer_names[uda->cfg[CMD_MIXER]]);
snd_iprintf(buffer, "De-emphasis : %s\n", deemp_names[uda->cfg[CMD_DEEMP]]);
snd_iprintf(buffer, "Peak detection pos. : %s\n", uda->cfg[CMD_PEAK] ? "after" : "before");
snd_iprintf(buffer, "Peak value : %s\n\n", peak_value[peak]);
snd_iprintf(buffer, "Automatic Gain Ctrl : %s\n", uda->cfg[CMD_AGC] ? "on" : "off");
snd_iprintf(buffer, "AGC attack time : %d ms\n", AGC_atime[uda->cfg[CMD_AGC_TIME]]);
snd_iprintf(buffer, "AGC decay time : %d ms\n", AGC_dtime[uda->cfg[CMD_AGC_TIME]]);
snd_iprintf(buffer, "AGC output level : %s dB\n\n", AGC_level[uda->cfg[CMD_AGC_LEVEL]]);
snd_iprintf(buffer, "Mute : %s\n", uda->cfg[CMD_MUTE] ? "on" : "off");
if (uda->cfg[CMD_VOLUME] == 0)
snd_iprintf(buffer, "Volume : 0 dB\n");
else if (uda->cfg[CMD_VOLUME] < 62)
snd_iprintf(buffer, "Volume : %d dB\n", -1*uda->cfg[CMD_VOLUME] +1);
else
snd_iprintf(buffer, "Volume : -INF dB\n");
snd_iprintf(buffer, "Bass : %s\n", bass_values[uda->cfg[CMD_FILTER]][uda->cfg[CMD_BASS]]);
snd_iprintf(buffer, "Trebble : %d dB\n", uda->cfg[CMD_FILTER] ? 2*uda->cfg[CMD_TREBBLE] : 0);
snd_iprintf(buffer, "Input Gain (6dB) : %s\n", uda->cfg[CMD_IGAIN] ? "on" : "off");
snd_iprintf(buffer, "Output Gain (6dB) : %s\n", uda->cfg[CMD_OGAIN] ? "on" : "off");
snd_iprintf(buffer, "Mic sensitivity : %s\n", mic_sens_value[uda->cfg[CMD_MIC]]);
if(uda->cfg[CMD_CH1] < 31)
snd_iprintf(buffer, "Mixer gain channel 1: -%d.%c dB\n",
((uda->cfg[CMD_CH1] >> 1) * 3) + (uda->cfg[CMD_CH1] & 1),
uda->cfg[CMD_CH1] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Mixer gain channel 1: -INF dB\n");
if(uda->cfg[CMD_CH2] < 31)
snd_iprintf(buffer, "Mixer gain channel 2: -%d.%c dB\n",
((uda->cfg[CMD_CH2] >> 1) * 3) + (uda->cfg[CMD_CH2] & 1),
uda->cfg[CMD_CH2] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Mixer gain channel 2: -INF dB\n");
if(uda->cfg[CMD_IG] > 5)
snd_iprintf(buffer, "Input Amp. Gain ch 2: %d.%c dB\n",
(uda->cfg[CMD_IG] >> 1) -3, uda->cfg[CMD_IG] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Input Amp. Gain ch 2: %s dB\n", ig_small_value[uda->cfg[CMD_IG]]);
}
static void snd_uda1341_proc_regs_read(snd_info_entry_t *entry,
snd_info_buffer_t * buffer)
{
struct l3_client *clnt = entry->private_data;
struct uda1341 *uda = clnt->driver_data;
int reg;
char buf[12];
spin_lock(&uda->reg_lock);
for (reg = 0; reg < uda1341_reg_last; reg ++) {
if (reg == empty)
continue;
int2str_bin8(uda->regs[reg], buf);
snd_iprintf(buffer, "%s = %s\n", uda1341_reg_names[reg], buf);
}
int2str_bin8(snd_uda1341_codec_read(clnt, UDA1341_DATA1), buf);
snd_iprintf(buffer, "DATA1 = %s\n", buf);
spin_unlock(&uda->reg_lock);
}
static void __devinit snd_uda1341_proc_init(snd_card_t *card, struct l3_client *clnt)
{
snd_info_entry_t *entry;
if (! snd_card_proc_new(card, "uda1341", &entry))
snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_read);
if (! snd_card_proc_new(card, "uda1341-regs", &entry))
snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_regs_read);
}
/* }}} */
/* {{{ Mixer controls setting */
/* {{{ UDA1341 single functions */
#define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, \
.get = snd_uda1341_get_single, .put = snd_uda1341_put_single, \
.private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}
static int snd_uda1341_info_single(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int mask = (kcontrol->private_value >> 12) & 63;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_uda1341_get_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int mask = (kcontrol->private_value >> 12) & 63;
int invert = (kcontrol->private_value >> 18) & 1;
ucontrol->value.integer.value[0] = uda->cfg[where];
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_uda1341_put_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg = (kcontrol->private_value >> 5) & 15;
int shift = (kcontrol->private_value >> 9) & 7;
int mask = (kcontrol->private_value >> 12) & 63;
int invert = (kcontrol->private_value >> 18) & 1;
unsigned short val;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
uda->cfg[where] = val;
return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);
}
/* }}} */
/* {{{ UDA1341 enum functions */
#define UDA1341_ENUM(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, \
.get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, \
.private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}
static int snd_uda1341_info_enum(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int where = kcontrol->private_value & 31;
const char **texts;
// this register we don't handle this way
if (!uda1341_enum_items[where])
return -EINVAL;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = uda1341_enum_items[where];
if (uinfo->value.enumerated.item >= uda1341_enum_items[where])
uinfo->value.enumerated.item = uda1341_enum_items[where] - 1;
texts = uda1341_enum_names[where];
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_uda1341_get_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
ucontrol->value.enumerated.item[0] = uda->cfg[where];
return 0;
}
static int snd_uda1341_put_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg = (kcontrol->private_value >> 5) & 15;
int shift = (kcontrol->private_value >> 9) & 7;
int mask = (kcontrol->private_value >> 12) & 63;
uda->cfg[where] = (ucontrol->value.enumerated.item[0] & mask);
return snd_uda1341_update_bits(clnt, reg, mask, shift, uda->cfg[where], FLUSH);
}
/* }}} */
/* {{{ UDA1341 2regs functions */
#define UDA1341_2REGS(xname, where, reg_1, reg_2, shift_1, shift_2, mask_1, mask_2, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), .info = snd_uda1341_info_2regs, \
.get = snd_uda1341_get_2regs, .put = snd_uda1341_put_2regs, \
.private_value = where | (reg_1 << 5) | (reg_2 << 9) | (shift_1 << 13) | (shift_2 << 16) | \
(mask_1 << 19) | (mask_2 << 25) | (invert << 31) \
}
static int snd_uda1341_info_2regs(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int mask;
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_uda1341_get_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int invert = (kcontrol->private_value >> 31) & 1;
int mask;
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
ucontrol->value.integer.value[0] = uda->cfg[where];
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_uda1341_put_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg_1 = (kcontrol->private_value >> 5) & 15;
int reg_2 = (kcontrol->private_value >> 9) & 15;
int shift_1 = (kcontrol->private_value >> 13) & 7;
int shift_2 = (kcontrol->private_value >> 16) & 7;
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int invert = (kcontrol->private_value >> 31) & 1;
int mask;
unsigned short val1, val2, val;
val = ucontrol->value.integer.value[0];
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
val1 = val & mask_1;
val2 = (val / (mask_1 + 1)) & mask_2;
if (invert) {
val1 = mask_1 - val1;
val2 = mask_2 - val2;
}
uda->cfg[where] = invert ? mask - val : val;
//FIXME - return value
snd_uda1341_update_bits(clnt, reg_1, mask_1, shift_1, val1, FLUSH);
return snd_uda1341_update_bits(clnt, reg_2, mask_2, shift_2, val2, FLUSH);
}
/* }}} */
static snd_kcontrol_new_t snd_uda1341_controls[] = {
UDA1341_SINGLE("Master Playback Switch", CMD_MUTE, data0_2, 2, 1, 1),
UDA1341_SINGLE("Master Playback Volume", CMD_VOLUME, data0_0, 0, 63, 1),
UDA1341_SINGLE("Bass Playback Volume", CMD_BASS, data0_1, 2, 15, 0),
UDA1341_SINGLE("Treble Playback Volume", CMD_TREBBLE, data0_1, 0, 3, 0),
UDA1341_SINGLE("Input Gain Switch", CMD_IGAIN, stat1, 5, 1, 0),
UDA1341_SINGLE("Output Gain Switch", CMD_OGAIN, stat1, 6, 1, 0),
UDA1341_SINGLE("Mixer Gain Channel 1 Volume", CMD_CH1, ext0, 0, 31, 1),
UDA1341_SINGLE("Mixer Gain Channel 2 Volume", CMD_CH2, ext1, 0, 31, 1),
UDA1341_SINGLE("Mic Sensitivity Volume", CMD_MIC, ext2, 2, 7, 0),
UDA1341_SINGLE("AGC Output Level", CMD_AGC_LEVEL, ext6, 0, 3, 0),
UDA1341_SINGLE("AGC Time Constant", CMD_AGC_TIME, ext6, 2, 7, 0),
UDA1341_SINGLE("AGC Time Constant Switch", CMD_AGC, ext4, 4, 1, 0),
UDA1341_SINGLE("DAC Power", CMD_DAC, stat1, 0, 1, 0),
UDA1341_SINGLE("ADC Power", CMD_ADC, stat1, 1, 1, 0),
UDA1341_ENUM("Peak detection", CMD_PEAK, data0_2, 5, 1, 0),
UDA1341_ENUM("De-emphasis", CMD_DEEMP, data0_2, 3, 3, 0),
UDA1341_ENUM("Mixer mode", CMD_MIXER, ext2, 0, 3, 0),
UDA1341_ENUM("Filter mode", CMD_FILTER, data0_2, 0, 3, 0),
UDA1341_2REGS("Gain Input Amplifier Gain (channel 2)", CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
};
static void uda1341_free(struct l3_client *uda1341)
{
l3_detach_client(uda1341); // calls kfree for driver_data (uda1341_t)
kfree(uda1341);
}
static int uda1341_dev_free(snd_device_t *device)
{
struct l3_client *clnt = device->device_data;
uda1341_free(clnt);
return 0;
}
int __init snd_chip_uda1341_mixer_new(snd_card_t *card, struct l3_client **clnt)
{
static snd_device_ops_t ops = {
.dev_free = uda1341_dev_free,
};
struct l3_client *uda1341;
int idx, err;
snd_assert(card != NULL, return -EINVAL);
uda1341 = kcalloc(1, sizeof(*uda1341), GFP_KERNEL);
if (uda1341 == NULL)
return -ENOMEM;
if ((err = l3_attach_client(uda1341, "l3-bit-sa1100-gpio", "snd-uda1341"))) {
kfree(uda1341);
return err;
}
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, uda1341, &ops)) < 0) {
l3_detach_client(uda1341);
kfree(uda1341);
return err;
}
for (idx = 0; idx < ARRAY_SIZE(snd_uda1341_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_uda1341_controls[idx], uda1341))) < 0)
return err;
}
*clnt = uda1341;
strcpy(card->mixername, "UDA1341TS Mixer");
((uda1341_t *)uda1341->driver_data)->card = card;
snd_uda1341_proc_init(card, uda1341);
return 0;
}
/* }}} */
/* {{{ L3 operations */
static int uda1341_attach(struct l3_client *clnt)
{
struct uda1341 *uda;
uda = kcalloc(1, sizeof(*uda), 0, GFP_KERNEL);
if (!uda)
return -ENOMEM;
/* init fixed parts of my copy of registers */
uda->regs[stat0] = STAT0;
uda->regs[stat1] = STAT1;
uda->regs[data0_0] = DATA0_0;
uda->regs[data0_1] = DATA0_1;
uda->regs[data0_2] = DATA0_2;
uda->write = snd_uda1341_codec_write;
uda->read = snd_uda1341_codec_read;
spin_lock_init(&uda->reg_lock);
clnt->driver_data = uda;
return 0;
}
static void uda1341_detach(struct l3_client *clnt)
{
kfree(clnt->driver_data);
}
static int
uda1341_command(struct l3_client *clnt, int cmd, void *arg)
{
if (cmd != CMD_READ_REG)
return snd_uda1341_cfg_write(clnt, cmd, (int) arg, FLUSH);
return snd_uda1341_codec_read(clnt, (int) arg);
}
static int uda1341_open(struct l3_client *clnt)
{
struct uda1341 *uda = clnt->driver_data;
uda->active = 1;
/* init default configuration */
snd_uda1341_cfg_write(clnt, CMD_RESET, 0, REGS_ONLY);
snd_uda1341_cfg_write(clnt, CMD_FS, F256, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_FORMAT, LSB16, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_OGAIN, ON, FLUSH); // default off after reset
snd_uda1341_cfg_write(clnt, CMD_IGAIN, ON, FLUSH); // default off after reset
snd_uda1341_cfg_write(clnt, CMD_DAC, ON, FLUSH); // ??? default value after reset
snd_uda1341_cfg_write(clnt, CMD_ADC, ON, FLUSH); // ??? default value after reset
snd_uda1341_cfg_write(clnt, CMD_VOLUME, 20, FLUSH); // default 0dB after reset
snd_uda1341_cfg_write(clnt, CMD_BASS, 0, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_TREBBLE, 0, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_PEAK, AFTER, REGS_ONLY);// default value after reset
snd_uda1341_cfg_write(clnt, CMD_DEEMP, NONE, REGS_ONLY);// default value after reset
//at this moment should be QMUTED by h3600_audio_init
snd_uda1341_cfg_write(clnt, CMD_MUTE, OFF, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_FILTER, MAX, FLUSH); // defaul flat after reset
snd_uda1341_cfg_write(clnt, CMD_CH1, 31, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_CH2, 4, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_MIC, 4, FLUSH); // default 0dB after reset
snd_uda1341_cfg_write(clnt, CMD_MIXER, MIXER, FLUSH); // default doub.dif.mode
snd_uda1341_cfg_write(clnt, CMD_AGC, OFF, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_IG, 0, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_AGC_TIME, 0, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_AGC_LEVEL, 0, FLUSH); // default value after reset
return 0;
}
static void uda1341_close(struct l3_client *clnt)
{
struct uda1341 *uda = clnt->driver_data;
uda->active = 0;
}
/* }}} */
/* {{{ Module and L3 initialization */
static struct l3_ops uda1341_ops = {
.open = uda1341_open,
.command = uda1341_command,
.close = uda1341_close,
};
static struct l3_driver uda1341_driver = {
.name = UDA1341_ALSA_NAME,
.attach_client = uda1341_attach,
.detach_client = uda1341_detach,
.ops = &uda1341_ops,
.owner = THIS_MODULE,
};
static int __init uda1341_init(void)
{
return l3_add_driver(&uda1341_driver);
}
static void __exit uda1341_exit(void)
{
l3_del_driver(&uda1341_driver);
}
module_init(uda1341_init);
module_exit(uda1341_exit);
MODULE_AUTHOR("Tomas Kasparek <tomas.kasparek@seznam.cz>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Philips UDA1341 CODEC driver for ALSA");
MODULE_SUPPORTED_DEVICE("{{UDA1341,UDA1341TS}}");
EXPORT_SYMBOL(snd_chip_uda1341_mixer_new);
/* }}} */
/*
* Local variables:
* indent-tabs-mode: t
* End:
*/

16
sound/i2c/other/Makefile Normal file
View File

@@ -0,0 +1,16 @@
#
# Makefile for ALSA
# Copyright (c) 2003 by Jaroslav Kysela <perex@suse.cz>
#
snd-ak4114-objs := ak4114.o
snd-ak4117-objs := ak4117.o
snd-ak4xxx-adda-objs := ak4xxx-adda.o
snd-tea575x-tuner-objs := tea575x-tuner.o
# Module Dependency
obj-$(CONFIG_SND_PDAUDIOCF) += snd-ak4117.o
obj-$(CONFIG_SND_ICE1712) += snd-ak4xxx-adda.o
obj-$(CONFIG_SND_ICE1724) += snd-ak4xxx-adda.o
obj-$(CONFIG_SND_ICE1724) += snd-ak4114.o
obj-$(CONFIG_SND_FM801_TEA575X) += snd-tea575x-tuner.o

580
sound/i2c/other/ak4114.c Normal file
View File

@@ -0,0 +1,580 @@
/*
* Routines for control of the AK4114 via I2C and 4-wire serial interface
* IEC958 (S/PDIF) receiver by Asahi Kasei
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/ak4114.h>
#include <sound/asoundef.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("AK4114 IEC958 (S/PDIF) receiver by Asahi Kasei");
MODULE_LICENSE("GPL");
#define AK4114_ADDR 0x00 /* fixed address */
static void ak4114_stats(void *);
static void reg_write(ak4114_t *ak4114, unsigned char reg, unsigned char val)
{
ak4114->write(ak4114->private_data, reg, val);
if (reg <= AK4114_REG_INT1_MASK)
ak4114->regmap[reg] = val;
else if (reg >= AK4114_REG_RXCSB0 && reg <= AK4114_REG_TXCSB4)
ak4114->txcsb[reg-AK4114_REG_RXCSB0] = val;
}
static inline unsigned char reg_read(ak4114_t *ak4114, unsigned char reg)
{
return ak4114->read(ak4114->private_data, reg);
}
#if 0
static void reg_dump(ak4114_t *ak4114)
{
int i;
printk("AK4114 REG DUMP:\n");
for (i = 0; i < 0x20; i++)
printk("reg[%02x] = %02x (%02x)\n", i, reg_read(ak4114, i), i < sizeof(ak4114->regmap) ? ak4114->regmap[i] : 0);
}
#endif
static void snd_ak4114_free(ak4114_t *chip)
{
chip->init = 1; /* don't schedule new work */
mb();
if (chip->workqueue != NULL) {
flush_workqueue(chip->workqueue);
destroy_workqueue(chip->workqueue);
}
kfree(chip);
}
static int snd_ak4114_dev_free(snd_device_t *device)
{
ak4114_t *chip = device->device_data;
snd_ak4114_free(chip);
return 0;
}
int snd_ak4114_create(snd_card_t *card,
ak4114_read_t *read, ak4114_write_t *write,
unsigned char pgm[7], unsigned char txcsb[5],
void *private_data, ak4114_t **r_ak4114)
{
ak4114_t *chip;
int err = 0;
unsigned char reg;
static snd_device_ops_t ops = {
.dev_free = snd_ak4114_dev_free,
};
chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
spin_lock_init(&chip->lock);
chip->card = card;
chip->read = read;
chip->write = write;
chip->private_data = private_data;
for (reg = 0; reg < 7; reg++)
chip->regmap[reg] = pgm[reg];
for (reg = 0; reg < 5; reg++)
chip->txcsb[reg] = txcsb[reg];
chip->workqueue = create_workqueue("snd-ak4114");
if (chip->workqueue == NULL) {
kfree(chip);
return -ENOMEM;
}
snd_ak4114_reinit(chip);
chip->rcs0 = reg_read(chip, AK4114_REG_RCS0) & ~(AK4114_QINT | AK4114_CINT);
chip->rcs1 = reg_read(chip, AK4114_REG_RCS1);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __fail;
if (r_ak4114)
*r_ak4114 = chip;
return 0;
__fail:
snd_ak4114_free(chip);
return err < 0 ? err : -EIO;
}
void snd_ak4114_reg_write(ak4114_t *chip, unsigned char reg, unsigned char mask, unsigned char val)
{
if (reg <= AK4114_REG_INT1_MASK)
reg_write(chip, reg, (chip->regmap[reg] & ~mask) | val);
else if (reg >= AK4114_REG_TXCSB0 && reg <= AK4114_REG_TXCSB4)
reg_write(chip, reg, (chip->txcsb[reg] & ~mask) | val);
}
void snd_ak4114_reinit(ak4114_t *chip)
{
unsigned char old = chip->regmap[AK4114_REG_PWRDN], reg;
chip->init = 1;
mb();
flush_workqueue(chip->workqueue);
/* bring the chip to reset state and powerdown state */
reg_write(chip, AK4114_REG_PWRDN, old & ~(AK4114_RST|AK4114_PWN));
udelay(200);
/* release reset, but leave powerdown */
reg_write(chip, AK4114_REG_PWRDN, (old | AK4114_RST) & ~AK4114_PWN);
udelay(200);
for (reg = 1; reg < 7; reg++)
reg_write(chip, reg, chip->regmap[reg]);
for (reg = 0; reg < 5; reg++)
reg_write(chip, reg + AK4114_REG_TXCSB0, chip->txcsb[reg]);
/* release powerdown, everything is initialized now */
reg_write(chip, AK4114_REG_PWRDN, old | AK4114_RST | AK4114_PWN);
/* bring up statistics / event queing */
chip->init = 0;
INIT_WORK(&chip->work, ak4114_stats, chip);
queue_delayed_work(chip->workqueue, &chip->work, HZ / 10);
}
static unsigned int external_rate(unsigned char rcs1)
{
switch (rcs1 & (AK4114_FS0|AK4114_FS1|AK4114_FS2|AK4114_FS3)) {
case AK4114_FS_32000HZ: return 32000;
case AK4114_FS_44100HZ: return 44100;
case AK4114_FS_48000HZ: return 48000;
case AK4114_FS_88200HZ: return 88200;
case AK4114_FS_96000HZ: return 96000;
case AK4114_FS_176400HZ: return 176400;
case AK4114_FS_192000HZ: return 192000;
default: return 0;
}
}
static int snd_ak4114_in_error_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = LONG_MAX;
return 0;
}
static int snd_ak4114_in_error_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
long *ptr;
spin_lock_irq(&chip->lock);
ptr = (long *)(((char *)chip) + kcontrol->private_value);
ucontrol->value.integer.value[0] = *ptr;
*ptr = 0;
spin_unlock_irq(&chip->lock);
return 0;
}
static int snd_ak4114_in_bit_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_ak4114_in_bit_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned char reg = kcontrol->private_value & 0xff;
unsigned char bit = (kcontrol->private_value >> 8) & 0xff;
unsigned char inv = (kcontrol->private_value >> 31) & 1;
ucontrol->value.integer.value[0] = ((reg_read(chip, reg) & (1 << bit)) ? 1 : 0) ^ inv;
return 0;
}
static int snd_ak4114_rate_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 192000;
return 0;
}
static int snd_ak4114_rate_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = external_rate(reg_read(chip, AK4114_REG_RCS1));
return 0;
}
static int snd_ak4114_spdif_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ak4114_spdif_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4114_REG_RXCSB_SIZE; i++)
ucontrol->value.iec958.status[i] = reg_read(chip, AK4114_REG_RXCSB0 + i);
return 0;
}
static int snd_ak4114_spdif_playback_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4114_REG_TXCSB_SIZE; i++)
ucontrol->value.iec958.status[i] = chip->txcsb[i];
return 0;
}
static int snd_ak4114_spdif_playback_put(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4114_REG_TXCSB_SIZE; i++)
reg_write(chip, AK4114_REG_TXCSB0 + i, ucontrol->value.iec958.status[i]);
return 0;
}
static int snd_ak4114_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ak4114_spdif_mask_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
memset(ucontrol->value.iec958.status, 0xff, AK4114_REG_RXCSB_SIZE);
return 0;
}
static int snd_ak4114_spdif_pinfo(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0xffff;
uinfo->count = 4;
return 0;
}
static int snd_ak4114_spdif_pget(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned short tmp;
ucontrol->value.integer.value[0] = 0xf8f2;
ucontrol->value.integer.value[1] = 0x4e1f;
tmp = reg_read(chip, AK4114_REG_Pc0) | (reg_read(chip, AK4114_REG_Pc1) << 8);
ucontrol->value.integer.value[2] = tmp;
tmp = reg_read(chip, AK4114_REG_Pd0) | (reg_read(chip, AK4114_REG_Pd1) << 8);
ucontrol->value.integer.value[3] = tmp;
return 0;
}
static int snd_ak4114_spdif_qinfo(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = AK4114_REG_QSUB_SIZE;
return 0;
}
static int snd_ak4114_spdif_qget(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4114_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4114_REG_QSUB_SIZE; i++)
ucontrol->value.bytes.data[i] = reg_read(chip, AK4114_REG_QSUB_ADDR + i);
return 0;
}
/* Don't forget to change AK4114_CONTROLS define!!! */
static snd_kcontrol_new_t snd_ak4114_iec958_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Parity Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_error_info,
.get = snd_ak4114_in_error_get,
.private_value = offsetof(ak4114_t, parity_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 V-Bit Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_error_info,
.get = snd_ak4114_in_error_get,
.private_value = offsetof(ak4114_t, v_bit_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 C-CRC Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_error_info,
.get = snd_ak4114_in_error_get,
.private_value = offsetof(ak4114_t, ccrc_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Q-CRC Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_error_info,
.get = snd_ak4114_in_error_get,
.private_value = offsetof(ak4114_t, qcrc_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 External Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_rate_info,
.get = snd_ak4114_rate_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ak4114_spdif_mask_info,
.get = snd_ak4114_spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_spdif_info,
.get = snd_ak4114_spdif_playback_get,
.put = snd_ak4114_spdif_playback_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ak4114_spdif_mask_info,
.get = snd_ak4114_spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_spdif_info,
.get = snd_ak4114_spdif_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Preample Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_spdif_pinfo,
.get = snd_ak4114_spdif_pget,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Q-subcode Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_spdif_qinfo,
.get = snd_ak4114_spdif_qget,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Audio",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_bit_info,
.get = snd_ak4114_in_bit_get,
.private_value = (1<<31) | (1<<8) | AK4114_REG_RCS0,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Non-PCM Bitstream",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_bit_info,
.get = snd_ak4114_in_bit_get,
.private_value = (6<<8) | AK4114_REG_RCS1,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 DTS Bitstream",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4114_in_bit_info,
.get = snd_ak4114_in_bit_get,
.private_value = (3<<8) | AK4114_REG_RCS1,
}
};
int snd_ak4114_build(ak4114_t *ak4114,
snd_pcm_substream_t *ply_substream,
snd_pcm_substream_t *cap_substream)
{
snd_kcontrol_t *kctl;
unsigned int idx;
int err;
snd_assert(cap_substream, return -EINVAL);
ak4114->playback_substream = ply_substream;
ak4114->capture_substream = cap_substream;
for (idx = 0; idx < AK4114_CONTROLS; idx++) {
kctl = snd_ctl_new1(&snd_ak4114_iec958_controls[idx], ak4114);
if (kctl == NULL)
return -ENOMEM;
if (!strstr(kctl->id.name, "Playback")) {
if (ply_substream == NULL) {
snd_ctl_free_one(kctl);
ak4114->kctls[idx] = NULL;
continue;
}
kctl->id.device = ply_substream->pcm->device;
kctl->id.subdevice = ply_substream->number;
} else {
kctl->id.device = cap_substream->pcm->device;
kctl->id.subdevice = cap_substream->number;
}
err = snd_ctl_add(ak4114->card, kctl);
if (err < 0)
return err;
ak4114->kctls[idx] = kctl;
}
return 0;
}
int snd_ak4114_external_rate(ak4114_t *ak4114)
{
unsigned char rcs1;
rcs1 = reg_read(ak4114, AK4114_REG_RCS1);
return external_rate(rcs1);
}
int snd_ak4114_check_rate_and_errors(ak4114_t *ak4114, unsigned int flags)
{
snd_pcm_runtime_t *runtime = ak4114->capture_substream ? ak4114->capture_substream->runtime : NULL;
unsigned long _flags;
int res = 0;
unsigned char rcs0, rcs1;
unsigned char c0, c1;
rcs1 = reg_read(ak4114, AK4114_REG_RCS1);
if (flags & AK4114_CHECK_NO_STAT)
goto __rate;
rcs0 = reg_read(ak4114, AK4114_REG_RCS0);
spin_lock_irqsave(&ak4114->lock, _flags);
if (rcs0 & AK4114_PAR)
ak4114->parity_errors++;
if (rcs1 & AK4114_V)
ak4114->v_bit_errors++;
if (rcs1 & AK4114_CCRC)
ak4114->ccrc_errors++;
if (rcs1 & AK4114_QCRC)
ak4114->qcrc_errors++;
c0 = (ak4114->rcs0 & (AK4114_QINT | AK4114_CINT | AK4114_PEM | AK4114_AUDION | AK4114_AUTO | AK4114_UNLCK)) ^
(rcs0 & (AK4114_QINT | AK4114_CINT | AK4114_PEM | AK4114_AUDION | AK4114_AUTO | AK4114_UNLCK));
c1 = (ak4114->rcs1 & 0xf0) ^ (rcs1 & 0xf0);
ak4114->rcs0 = rcs0 & ~(AK4114_QINT | AK4114_CINT);
ak4114->rcs1 = rcs1;
spin_unlock_irqrestore(&ak4114->lock, _flags);
if (rcs0 & AK4114_PAR)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[0]->id);
if (rcs0 & AK4114_V)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[1]->id);
if (rcs1 & AK4114_CCRC)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[2]->id);
if (rcs1 & AK4114_QCRC)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[3]->id);
/* rate change */
if (c1 & 0xf0)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[4]->id);
if ((c0 & AK4114_PEM) | (c0 & AK4114_CINT))
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[9]->id);
if (c0 & AK4114_QINT)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[10]->id);
if (c0 & AK4114_AUDION)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[11]->id);
if (c0 & AK4114_AUTO)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[12]->id);
if (c0 & AK4114_DTSCD)
snd_ctl_notify(ak4114->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4114->kctls[13]->id);
if (ak4114->change_callback && (c0 | c1) != 0)
ak4114->change_callback(ak4114, c0, c1);
__rate:
/* compare rate */
res = external_rate(rcs1);
if (!(flags & AK4114_CHECK_NO_RATE) && runtime && runtime->rate != res) {
snd_pcm_stream_lock_irqsave(ak4114->capture_substream, _flags);
if (snd_pcm_running(ak4114->capture_substream)) {
// printk("rate changed (%i <- %i)\n", runtime->rate, res);
snd_pcm_stop(ak4114->capture_substream, SNDRV_PCM_STATE_DRAINING);
wake_up(&runtime->sleep);
res = 1;
}
snd_pcm_stream_unlock_irqrestore(ak4114->capture_substream, _flags);
}
return res;
}
static void ak4114_stats(void *data)
{
ak4114_t *chip = (ak4114_t *)data;
if (chip->init)
return;
snd_ak4114_check_rate_and_errors(chip, 0);
queue_delayed_work(chip->workqueue, &chip->work, HZ / 10);
}
EXPORT_SYMBOL(snd_ak4114_create);
EXPORT_SYMBOL(snd_ak4114_reg_write);
EXPORT_SYMBOL(snd_ak4114_reinit);
EXPORT_SYMBOL(snd_ak4114_build);
EXPORT_SYMBOL(snd_ak4114_external_rate);
EXPORT_SYMBOL(snd_ak4114_check_rate_and_errors);

559
sound/i2c/other/ak4117.c Normal file
View File

@@ -0,0 +1,559 @@
/*
* Routines for control of the AK4117 via 4-wire serial interface
* IEC958 (S/PDIF) receiver by Asahi Kasei
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/ak4117.h>
#include <sound/asoundef.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("AK4117 IEC958 (S/PDIF) receiver by Asahi Kasei");
MODULE_LICENSE("GPL");
#define AK4117_ADDR 0x00 /* fixed address */
static void snd_ak4117_timer(unsigned long data);
static void reg_write(ak4117_t *ak4117, unsigned char reg, unsigned char val)
{
ak4117->write(ak4117->private_data, reg, val);
if (reg < sizeof(ak4117->regmap))
ak4117->regmap[reg] = val;
}
static inline unsigned char reg_read(ak4117_t *ak4117, unsigned char reg)
{
return ak4117->read(ak4117->private_data, reg);
}
#if 0
static void reg_dump(ak4117_t *ak4117)
{
int i;
printk("AK4117 REG DUMP:\n");
for (i = 0; i < 0x1b; i++)
printk("reg[%02x] = %02x (%02x)\n", i, reg_read(ak4117, i), i < sizeof(ak4117->regmap) ? ak4117->regmap[i] : 0);
}
#endif
static void snd_ak4117_free(ak4117_t *chip)
{
del_timer(&chip->timer);
kfree(chip);
}
static int snd_ak4117_dev_free(snd_device_t *device)
{
ak4117_t *chip = device->device_data;
snd_ak4117_free(chip);
return 0;
}
int snd_ak4117_create(snd_card_t *card, ak4117_read_t *read, ak4117_write_t *write,
unsigned char pgm[5], void *private_data, ak4117_t **r_ak4117)
{
ak4117_t *chip;
int err = 0;
unsigned char reg;
static snd_device_ops_t ops = {
.dev_free = snd_ak4117_dev_free,
};
chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
spin_lock_init(&chip->lock);
chip->card = card;
chip->read = read;
chip->write = write;
chip->private_data = private_data;
init_timer(&chip->timer);
chip->timer.data = (unsigned long)chip;
chip->timer.function = snd_ak4117_timer;
for (reg = 0; reg < 5; reg++)
chip->regmap[reg] = pgm[reg];
snd_ak4117_reinit(chip);
chip->rcs0 = reg_read(chip, AK4117_REG_RCS0) & ~(AK4117_QINT | AK4117_CINT | AK4117_STC);
chip->rcs1 = reg_read(chip, AK4117_REG_RCS1);
chip->rcs2 = reg_read(chip, AK4117_REG_RCS2);
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, chip, &ops)) < 0)
goto __fail;
if (r_ak4117)
*r_ak4117 = chip;
return 0;
__fail:
snd_ak4117_free(chip);
return err < 0 ? err : -EIO;
}
void snd_ak4117_reg_write(ak4117_t *chip, unsigned char reg, unsigned char mask, unsigned char val)
{
if (reg >= 5)
return;
reg_write(chip, reg, (chip->regmap[reg] & ~mask) | val);
}
void snd_ak4117_reinit(ak4117_t *chip)
{
unsigned char old = chip->regmap[AK4117_REG_PWRDN], reg;
del_timer(&chip->timer);
chip->init = 1;
/* bring the chip to reset state and powerdown state */
reg_write(chip, AK4117_REG_PWRDN, 0);
udelay(200);
/* release reset, but leave powerdown */
reg_write(chip, AK4117_REG_PWRDN, (old | AK4117_RST) & ~AK4117_PWN);
udelay(200);
for (reg = 1; reg < 5; reg++)
reg_write(chip, reg, chip->regmap[reg]);
/* release powerdown, everything is initialized now */
reg_write(chip, AK4117_REG_PWRDN, old | AK4117_RST | AK4117_PWN);
chip->init = 0;
chip->timer.expires = 1 + jiffies;
add_timer(&chip->timer);
}
static unsigned int external_rate(unsigned char rcs1)
{
switch (rcs1 & (AK4117_FS0|AK4117_FS1|AK4117_FS2|AK4117_FS3)) {
case AK4117_FS_32000HZ: return 32000;
case AK4117_FS_44100HZ: return 44100;
case AK4117_FS_48000HZ: return 48000;
case AK4117_FS_88200HZ: return 88200;
case AK4117_FS_96000HZ: return 96000;
case AK4117_FS_176400HZ: return 176400;
case AK4117_FS_192000HZ: return 192000;
default: return 0;
}
}
static int snd_ak4117_in_error_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = LONG_MAX;
return 0;
}
static int snd_ak4117_in_error_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
long *ptr;
spin_lock_irq(&chip->lock);
ptr = (long *)(((char *)chip) + kcontrol->private_value);
ucontrol->value.integer.value[0] = *ptr;
*ptr = 0;
spin_unlock_irq(&chip->lock);
return 0;
}
static int snd_ak4117_in_bit_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_ak4117_in_bit_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
unsigned char reg = kcontrol->private_value & 0xff;
unsigned char bit = (kcontrol->private_value >> 8) & 0xff;
unsigned char inv = (kcontrol->private_value >> 31) & 1;
ucontrol->value.integer.value[0] = ((reg_read(chip, reg) & (1 << bit)) ? 1 : 0) ^ inv;
return 0;
}
static int snd_ak4117_rx_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_ak4117_rx_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = (chip->regmap[AK4117_REG_IO] & AK4117_IPS) ? 1 : 0;
return 0;
}
static int snd_ak4117_rx_put(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
int change;
u8 old_val;
spin_lock_irq(&chip->lock);
old_val = chip->regmap[AK4117_REG_IO];
change = !!ucontrol->value.integer.value[0] != ((old_val & AK4117_IPS) ? 1 : 0);
if (change)
reg_write(chip, AK4117_REG_IO, (old_val & ~AK4117_IPS) | (ucontrol->value.integer.value[0] ? AK4117_IPS : 0));
spin_unlock_irq(&chip->lock);
return change;
}
static int snd_ak4117_rate_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 192000;
return 0;
}
static int snd_ak4117_rate_get(snd_kcontrol_t *kcontrol,
snd_ctl_elem_value_t *ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = external_rate(reg_read(chip, AK4117_REG_RCS1));
return 0;
}
static int snd_ak4117_spdif_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ak4117_spdif_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4117_REG_RXCSB_SIZE; i++)
ucontrol->value.iec958.status[i] = reg_read(chip, AK4117_REG_RXCSB0 + i);
return 0;
}
static int snd_ak4117_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ak4117_spdif_mask_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
memset(ucontrol->value.iec958.status, 0xff, AK4117_REG_RXCSB_SIZE);
return 0;
}
static int snd_ak4117_spdif_pinfo(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0xffff;
uinfo->count = 4;
return 0;
}
static int snd_ak4117_spdif_pget(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
unsigned short tmp;
ucontrol->value.integer.value[0] = 0xf8f2;
ucontrol->value.integer.value[1] = 0x4e1f;
tmp = reg_read(chip, AK4117_REG_Pc0) | (reg_read(chip, AK4117_REG_Pc1) << 8);
ucontrol->value.integer.value[2] = tmp;
tmp = reg_read(chip, AK4117_REG_Pd0) | (reg_read(chip, AK4117_REG_Pd1) << 8);
ucontrol->value.integer.value[3] = tmp;
return 0;
}
static int snd_ak4117_spdif_qinfo(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = AK4117_REG_QSUB_SIZE;
return 0;
}
static int snd_ak4117_spdif_qget(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
ak4117_t *chip = snd_kcontrol_chip(kcontrol);
unsigned i;
for (i = 0; i < AK4117_REG_QSUB_SIZE; i++)
ucontrol->value.bytes.data[i] = reg_read(chip, AK4117_REG_QSUB_ADDR + i);
return 0;
}
/* Don't forget to change AK4117_CONTROLS define!!! */
static snd_kcontrol_new_t snd_ak4117_iec958_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Parity Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_error_info,
.get = snd_ak4117_in_error_get,
.private_value = offsetof(ak4117_t, parity_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 V-Bit Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_error_info,
.get = snd_ak4117_in_error_get,
.private_value = offsetof(ak4117_t, v_bit_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 C-CRC Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_error_info,
.get = snd_ak4117_in_error_get,
.private_value = offsetof(ak4117_t, ccrc_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Q-CRC Errors",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_error_info,
.get = snd_ak4117_in_error_get,
.private_value = offsetof(ak4117_t, qcrc_errors),
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 External Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_rate_info,
.get = snd_ak4117_rate_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_ak4117_spdif_mask_info,
.get = snd_ak4117_spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_spdif_info,
.get = snd_ak4117_spdif_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Preample Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_spdif_pinfo,
.get = snd_ak4117_spdif_pget,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Q-subcode Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_spdif_qinfo,
.get = snd_ak4117_spdif_qget,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Audio",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_bit_info,
.get = snd_ak4117_in_bit_get,
.private_value = (1<<31) | (3<<8) | AK4117_REG_RCS0,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Non-PCM Bitstream",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_bit_info,
.get = snd_ak4117_in_bit_get,
.private_value = (5<<8) | AK4117_REG_RCS1,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 DTS Bitstream",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_ak4117_in_bit_info,
.get = snd_ak4117_in_bit_get,
.private_value = (6<<8) | AK4117_REG_RCS1,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "AK4117 Input Select",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = snd_ak4117_rx_info,
.get = snd_ak4117_rx_get,
.put = snd_ak4117_rx_put,
}
};
int snd_ak4117_build(ak4117_t *ak4117, snd_pcm_substream_t *cap_substream)
{
snd_kcontrol_t *kctl;
unsigned int idx;
int err;
snd_assert(cap_substream, return -EINVAL);
ak4117->substream = cap_substream;
for (idx = 0; idx < AK4117_CONTROLS; idx++) {
kctl = snd_ctl_new1(&snd_ak4117_iec958_controls[idx], ak4117);
if (kctl == NULL)
return -ENOMEM;
kctl->id.device = cap_substream->pcm->device;
kctl->id.subdevice = cap_substream->number;
err = snd_ctl_add(ak4117->card, kctl);
if (err < 0)
return err;
ak4117->kctls[idx] = kctl;
}
return 0;
}
int snd_ak4117_external_rate(ak4117_t *ak4117)
{
unsigned char rcs1;
rcs1 = reg_read(ak4117, AK4117_REG_RCS1);
return external_rate(rcs1);
}
int snd_ak4117_check_rate_and_errors(ak4117_t *ak4117, unsigned int flags)
{
snd_pcm_runtime_t *runtime = ak4117->substream ? ak4117->substream->runtime : NULL;
unsigned long _flags;
int res = 0;
unsigned char rcs0, rcs1, rcs2;
unsigned char c0, c1;
rcs1 = reg_read(ak4117, AK4117_REG_RCS1);
if (flags & AK4117_CHECK_NO_STAT)
goto __rate;
rcs0 = reg_read(ak4117, AK4117_REG_RCS0);
rcs2 = reg_read(ak4117, AK4117_REG_RCS2);
// printk("AK IRQ: rcs0 = 0x%x, rcs1 = 0x%x, rcs2 = 0x%x\n", rcs0, rcs1, rcs2);
spin_lock_irqsave(&ak4117->lock, _flags);
if (rcs0 & AK4117_PAR)
ak4117->parity_errors++;
if (rcs0 & AK4117_V)
ak4117->v_bit_errors++;
if (rcs2 & AK4117_CCRC)
ak4117->ccrc_errors++;
if (rcs2 & AK4117_QCRC)
ak4117->qcrc_errors++;
c0 = (ak4117->rcs0 & (AK4117_QINT | AK4117_CINT | AK4117_STC | AK4117_AUDION | AK4117_AUTO | AK4117_UNLCK)) ^
(rcs0 & (AK4117_QINT | AK4117_CINT | AK4117_STC | AK4117_AUDION | AK4117_AUTO | AK4117_UNLCK));
c1 = (ak4117->rcs1 & (AK4117_DTSCD | AK4117_NPCM | AK4117_PEM | 0x0f)) ^
(rcs1 & (AK4117_DTSCD | AK4117_NPCM | AK4117_PEM | 0x0f));
ak4117->rcs0 = rcs0 & ~(AK4117_QINT | AK4117_CINT | AK4117_STC);
ak4117->rcs1 = rcs1;
ak4117->rcs2 = rcs2;
spin_unlock_irqrestore(&ak4117->lock, _flags);
if (rcs0 & AK4117_PAR)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[0]->id);
if (rcs0 & AK4117_V)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[1]->id);
if (rcs2 & AK4117_CCRC)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[2]->id);
if (rcs2 & AK4117_QCRC)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[3]->id);
/* rate change */
if (c1 & 0x0f)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[4]->id);
if ((c1 & AK4117_PEM) | (c0 & AK4117_CINT))
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[6]->id);
if (c0 & AK4117_QINT)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[8]->id);
if (c0 & AK4117_AUDION)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[9]->id);
if (c1 & AK4117_NPCM)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[10]->id);
if (c1 & AK4117_DTSCD)
snd_ctl_notify(ak4117->card, SNDRV_CTL_EVENT_MASK_VALUE, &ak4117->kctls[11]->id);
if (ak4117->change_callback && (c0 | c1) != 0)
ak4117->change_callback(ak4117, c0, c1);
__rate:
/* compare rate */
res = external_rate(rcs1);
if (!(flags & AK4117_CHECK_NO_RATE) && runtime && runtime->rate != res) {
snd_pcm_stream_lock_irqsave(ak4117->substream, _flags);
if (snd_pcm_running(ak4117->substream)) {
// printk("rate changed (%i <- %i)\n", runtime->rate, res);
snd_pcm_stop(ak4117->substream, SNDRV_PCM_STATE_DRAINING);
wake_up(&runtime->sleep);
res = 1;
}
snd_pcm_stream_unlock_irqrestore(ak4117->substream, _flags);
}
return res;
}
static void snd_ak4117_timer(unsigned long data)
{
ak4117_t *chip = (ak4117_t *)data;
if (chip->init)
return;
snd_ak4117_check_rate_and_errors(chip, 0);
chip->timer.expires = 1 + jiffies;
add_timer(&chip->timer);
}
EXPORT_SYMBOL(snd_ak4117_create);
EXPORT_SYMBOL(snd_ak4117_reg_write);
EXPORT_SYMBOL(snd_ak4117_reinit);
EXPORT_SYMBOL(snd_ak4117_build);
EXPORT_SYMBOL(snd_ak4117_external_rate);
EXPORT_SYMBOL(snd_ak4117_check_rate_and_errors);

View File

@@ -0,0 +1,501 @@
/*
* ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
* AD and DA converters
*
* Copyright (c) 2000-2004 Jaroslav Kysela <perex@suse.cz>,
* Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/ak4xxx-adda.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
MODULE_LICENSE("GPL");
void snd_akm4xxx_write(akm4xxx_t *ak, int chip, unsigned char reg, unsigned char val)
{
ak->ops.lock(ak, chip);
ak->ops.write(ak, chip, reg, val);
/* save the data */
if (ak->type == SND_AK4524 || ak->type == SND_AK4528) {
if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0)
snd_akm4xxx_set(ak, chip, reg, val);
else
snd_akm4xxx_set_ipga(ak, chip, reg, val);
} else {
/* AK4529, or else */
snd_akm4xxx_set(ak, chip, reg, val);
}
ak->ops.unlock(ak, chip);
}
/*
* reset the AKM codecs
* @state: 1 = reset codec, 0 = restore the registers
*
* assert the reset operation and restores the register values to the chips.
*/
void snd_akm4xxx_reset(akm4xxx_t *ak, int state)
{
unsigned int chip;
unsigned char reg;
switch (ak->type) {
case SND_AK4524:
case SND_AK4528:
for (chip = 0; chip < ak->num_dacs/2; chip++) {
snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
if (state)
continue;
/* DAC volumes */
for (reg = 0x04; reg < (ak->type == SND_AK4528 ? 0x06 : 0x08); reg++)
snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
if (ak->type == SND_AK4528)
continue;
/* IPGA */
for (reg = 0x04; reg < 0x06; reg++)
snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get_ipga(ak, chip, reg));
}
break;
case SND_AK4529:
/* FIXME: needed for ak4529? */
break;
case SND_AK4355:
case SND_AK4358:
if (state) {
snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
return;
}
for (reg = 0x00; reg < 0x0b; reg++)
if (reg != 0x01)
snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg));
snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
break;
case SND_AK4381:
for (chip = 0; chip < ak->num_dacs/2; chip++) {
snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
if (state)
continue;
for (reg = 0x01; reg < 0x05; reg++)
snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
}
break;
}
}
/*
* initialize all the ak4xxx chips
*/
void snd_akm4xxx_init(akm4xxx_t *ak)
{
static unsigned char inits_ak4524[] = {
0x00, 0x07, /* 0: all power up */
0x01, 0x00, /* 1: ADC/DAC reset */
0x02, 0x60, /* 2: 24bit I2S */
0x03, 0x19, /* 3: deemphasis off */
0x01, 0x03, /* 1: ADC/DAC enable */
0x04, 0x00, /* 4: ADC left muted */
0x05, 0x00, /* 5: ADC right muted */
0x04, 0x80, /* 4: ADC IPGA gain 0dB */
0x05, 0x80, /* 5: ADC IPGA gain 0dB */
0x06, 0x00, /* 6: DAC left muted */
0x07, 0x00, /* 7: DAC right muted */
0xff, 0xff
};
static unsigned char inits_ak4528[] = {
0x00, 0x07, /* 0: all power up */
0x01, 0x00, /* 1: ADC/DAC reset */
0x02, 0x60, /* 2: 24bit I2S */
0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
0x01, 0x03, /* 1: ADC/DAC enable */
0x04, 0x00, /* 4: ADC left muted */
0x05, 0x00, /* 5: ADC right muted */
0xff, 0xff
};
static unsigned char inits_ak4529[] = {
0x09, 0x01, /* 9: ATS=0, RSTN=1 */
0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
0x02, 0xff, /* 2: LOUT1 muted */
0x03, 0xff, /* 3: ROUT1 muted */
0x04, 0xff, /* 4: LOUT2 muted */
0x05, 0xff, /* 5: ROUT2 muted */
0x06, 0xff, /* 6: LOUT3 muted */
0x07, 0xff, /* 7: ROUT3 muted */
0x0b, 0xff, /* B: LOUT4 muted */
0x0c, 0xff, /* C: ROUT4 muted */
0x08, 0x55, /* 8: deemphasis all off */
0xff, 0xff
};
static unsigned char inits_ak4355[] = {
0x01, 0x02, /* 1: reset and soft-mute */
0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, disable DZF, sharp roll-off, RSTN#=0 */
0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
// 0x02, 0x2e, /* quad speed */
0x03, 0x01, /* 3: de-emphasis off */
0x04, 0x00, /* 4: LOUT1 volume muted */
0x05, 0x00, /* 5: ROUT1 volume muted */
0x06, 0x00, /* 6: LOUT2 volume muted */
0x07, 0x00, /* 7: ROUT2 volume muted */
0x08, 0x00, /* 8: LOUT3 volume muted */
0x09, 0x00, /* 9: ROUT3 volume muted */
0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
0x01, 0x01, /* 1: un-reset, unmute */
0xff, 0xff
};
static unsigned char inits_ak4358[] = {
0x01, 0x02, /* 1: reset and soft-mute */
0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, disable DZF, sharp roll-off, RSTN#=0 */
0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
// 0x02, 0x2e, /* quad speed */
0x03, 0x01, /* 3: de-emphasis off */
0x04, 0x00, /* 4: LOUT1 volume muted */
0x05, 0x00, /* 5: ROUT1 volume muted */
0x06, 0x00, /* 6: LOUT2 volume muted */
0x07, 0x00, /* 7: ROUT2 volume muted */
0x08, 0x00, /* 8: LOUT3 volume muted */
0x09, 0x00, /* 9: ROUT3 volume muted */
0x0b, 0x00, /* b: LOUT4 volume muted */
0x0c, 0x00, /* c: ROUT4 volume muted */
0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
0x01, 0x01, /* 1: un-reset, unmute */
0xff, 0xff
};
static unsigned char inits_ak4381[] = {
0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
0x01, 0x02, /* 1: de-emphasis off, normal speed, sharp roll-off, DZF off */
// 0x01, 0x12, /* quad speed */
0x02, 0x00, /* 2: DZF disabled */
0x03, 0x00, /* 3: LATT 0 */
0x04, 0x00, /* 4: RATT 0 */
0x00, 0x0f, /* 0: power-up, un-reset */
0xff, 0xff
};
int chip, num_chips;
unsigned char *ptr, reg, data, *inits;
switch (ak->type) {
case SND_AK4524:
inits = inits_ak4524;
num_chips = ak->num_dacs / 2;
break;
case SND_AK4528:
inits = inits_ak4528;
num_chips = ak->num_dacs / 2;
break;
case SND_AK4529:
inits = inits_ak4529;
num_chips = 1;
break;
case SND_AK4355:
inits = inits_ak4355;
num_chips = 1;
break;
case SND_AK4358:
inits = inits_ak4358;
num_chips = 1;
break;
case SND_AK4381:
inits = inits_ak4381;
num_chips = ak->num_dacs / 2;
break;
default:
snd_BUG();
return;
}
for (chip = 0; chip < num_chips; chip++) {
ptr = inits;
while (*ptr != 0xff) {
reg = *ptr++;
data = *ptr++;
snd_akm4xxx_write(ak, chip, reg, data);
}
}
}
#define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
#define AK_GET_ADDR(val) ((val) & 0xff)
#define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f)
#define AK_GET_INVERT(val) (((val) >> 23) & 1)
#define AK_GET_MASK(val) (((val) >> 24) & 0xff)
#define AK_COMPOSE(chip,addr,shift,mask) (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
#define AK_INVERT (1<<23)
static int snd_akm4xxx_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_akm4xxx_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char val = snd_akm4xxx_get(ak, chip, addr);
ucontrol->value.integer.value[0] = invert ? mask - val : val;
return 0;
}
static int snd_akm4xxx_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
int change;
if (invert)
nval = mask - nval;
change = snd_akm4xxx_get(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
static int snd_akm4xxx_ipga_gain_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 36;
return 0;
}
static int snd_akm4xxx_ipga_gain_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
ucontrol->value.integer.value[0] = snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f;
return 0;
}
static int snd_akm4xxx_ipga_gain_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80;
int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
static int snd_akm4xxx_deemphasis_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
static char *texts[4] = {
"44.1kHz", "Off", "48kHz", "32kHz",
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 4;
if (uinfo->value.enumerated.item >= 4)
uinfo->value.enumerated.item = 3;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_akm4xxx_deemphasis_get(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
return 0;
}
static int snd_akm4xxx_deemphasis_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
int change;
nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
change = snd_akm4xxx_get(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
/*
* build AK4xxx controls
*/
int snd_akm4xxx_build_controls(akm4xxx_t *ak)
{
unsigned int idx, num_emphs;
snd_kcontrol_t *ctl;
int err;
ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
if (! ctl)
return -ENOMEM;
for (idx = 0; idx < ak->num_dacs; ++idx) {
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "DAC Volume");
ctl->id.index = idx + ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_volume_info;
ctl->get = snd_akm4xxx_volume_get;
ctl->put = snd_akm4xxx_volume_put;
switch (ak->type) {
case SND_AK4524:
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127); /* register 6 & 7 */
break;
case SND_AK4528:
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
break;
case SND_AK4529: {
int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; /* registers 2-7 and b,c */
ctl->private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
break;
}
case SND_AK4355:
ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); /* register 4-9, chip #0 only */
break;
case SND_AK4358:
if (idx >= 6)
ctl->private_value = AK_COMPOSE(0, idx + 5, 0, 255); /* register 4-9, chip #0 only */
else
ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); /* register 4-9, chip #0 only */
break;
case SND_AK4381:
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); /* register 3 & 4 */
break;
default:
err = -EINVAL;
goto __error;
}
ctl->private_data = ak;
if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
goto __error;
}
for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) {
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "ADC Volume");
ctl->id.index = idx + ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_volume_info;
ctl->get = snd_akm4xxx_volume_get;
ctl->put = snd_akm4xxx_volume_put;
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
ctl->private_data = ak;
if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
goto __error;
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "IPGA Analog Capture Volume");
ctl->id.index = idx + ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_ipga_gain_info;
ctl->get = snd_akm4xxx_ipga_gain_get;
ctl->put = snd_akm4xxx_ipga_gain_put;
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0); /* register 4 & 5 */
ctl->private_data = ak;
if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
goto __error;
}
if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
num_emphs = 1;
else
num_emphs = ak->num_dacs / 2;
for (idx = 0; idx < num_emphs; idx++) {
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "Deemphasis");
ctl->id.index = idx + ak->idx_offset;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_deemphasis_info;
ctl->get = snd_akm4xxx_deemphasis_get;
ctl->put = snd_akm4xxx_deemphasis_put;
switch (ak->type) {
case SND_AK4524:
case SND_AK4528:
ctl->private_value = AK_COMPOSE(idx, 3, 0, 0); /* register 3 */
break;
case SND_AK4529: {
int shift = idx == 3 ? 6 : (2 - idx) * 2;
ctl->private_value = AK_COMPOSE(0, 8, shift, 0); /* register 8 with shift */
break;
}
case SND_AK4355:
case SND_AK4358:
ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
break;
case SND_AK4381:
ctl->private_value = AK_COMPOSE(idx, 1, 1, 0);
break;
}
ctl->private_data = ak;
if ((err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
goto __error;
}
err = 0;
__error:
kfree(ctl);
return err;
}
static int __init alsa_akm4xxx_module_init(void)
{
return 0;
}
static void __exit alsa_akm4xxx_module_exit(void)
{
}
module_init(alsa_akm4xxx_module_init)
module_exit(alsa_akm4xxx_module_exit)
EXPORT_SYMBOL(snd_akm4xxx_write);
EXPORT_SYMBOL(snd_akm4xxx_reset);
EXPORT_SYMBOL(snd_akm4xxx_init);
EXPORT_SYMBOL(snd_akm4xxx_build_controls);

View File

@@ -0,0 +1,233 @@
/*
* ALSA driver for TEA5757/5759 Philips AM/FM radio tuner chips
*
* Copyright (c) 2004 Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/tea575x-tuner.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Routines for control of TEA5757/5759 Philips AM/FM radio tuner chips");
MODULE_LICENSE("GPL");
/*
* definitions
*/
#define TEA575X_BIT_SEARCH (1<<24) /* 1 = search action, 0 = tuned */
#define TEA575X_BIT_UPDOWN (1<<23) /* 0 = search down, 1 = search up */
#define TEA575X_BIT_MONO (1<<22) /* 0 = stereo, 1 = mono */
#define TEA575X_BIT_BAND_MASK (3<<20)
#define TEA575X_BIT_BAND_FM (0<<20)
#define TEA575X_BIT_BAND_MW (1<<20)
#define TEA575X_BIT_BAND_LW (1<<21)
#define TEA575X_BIT_BAND_SW (1<<22)
#define TEA575X_BIT_PORT_0 (1<<19) /* user bit */
#define TEA575X_BIT_PORT_1 (1<<18) /* user bit */
#define TEA575X_BIT_SEARCH_MASK (3<<16) /* search level */
#define TEA575X_BIT_SEARCH_5_28 (0<<16) /* FM >5uV, AM >28uV */
#define TEA575X_BIT_SEARCH_10_40 (1<<16) /* FM >10uV, AM > 40uV */
#define TEA575X_BIT_SEARCH_30_63 (2<<16) /* FM >30uV, AM > 63uV */
#define TEA575X_BIT_SEARCH_150_1000 (3<<16) /* FM > 150uV, AM > 1000uV */
#define TEA575X_BIT_DUMMY (1<<15) /* buffer */
#define TEA575X_BIT_FREQ_MASK 0x7fff
/*
* lowlevel part
*/
static void snd_tea575x_set_freq(tea575x_t *tea)
{
unsigned long freq;
freq = tea->freq / 16; /* to kHz */
if (freq > 108000)
freq = 108000;
if (freq < 87000)
freq = 87000;
/* crystal fixup */
if (tea->tea5759)
freq -= tea->freq_fixup;
else
freq += tea->freq_fixup;
/* freq /= 12.5 */
freq *= 10;
freq /= 125;
tea->val &= ~TEA575X_BIT_FREQ_MASK;
tea->val |= freq & TEA575X_BIT_FREQ_MASK;
tea->ops->write(tea, tea->val);
}
/*
* Linux Video interface
*/
static int snd_tea575x_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long data)
{
struct video_device *dev = video_devdata(file);
tea575x_t *tea = video_get_drvdata(dev);
void __user *arg = (void __user *)data;
switch(cmd) {
case VIDIOCGCAP:
{
struct video_capability v;
v.type = VID_TYPE_TUNER;
v.channels = 1;
v.audios = 1;
/* No we don't do pictures */
v.maxwidth = 0;
v.maxheight = 0;
v.minwidth = 0;
v.minheight = 0;
strcpy(v.name, tea->tea5759 ? "TEA5759" : "TEA5757");
if (copy_to_user(arg,&v,sizeof(v)))
return -EFAULT;
return 0;
}
case VIDIOCGTUNER:
{
struct video_tuner v;
if (copy_from_user(&v, arg,sizeof(v))!=0)
return -EFAULT;
if (v.tuner) /* Only 1 tuner */
return -EINVAL;
v.rangelow = (87*16000);
v.rangehigh = (108*16000);
v.flags = VIDEO_TUNER_LOW;
v.mode = VIDEO_MODE_AUTO;
strcpy(v.name, "FM");
v.signal = 0xFFFF;
if (copy_to_user(arg, &v, sizeof(v)))
return -EFAULT;
return 0;
}
case VIDIOCSTUNER:
{
struct video_tuner v;
if(copy_from_user(&v, arg, sizeof(v)))
return -EFAULT;
if(v.tuner!=0)
return -EINVAL;
/* Only 1 tuner so no setting needed ! */
return 0;
}
case VIDIOCGFREQ:
if(copy_to_user(arg, &tea->freq, sizeof(tea->freq)))
return -EFAULT;
return 0;
case VIDIOCSFREQ:
if(copy_from_user(&tea->freq, arg, sizeof(tea->freq)))
return -EFAULT;
snd_tea575x_set_freq(tea);
return 0;
case VIDIOCGAUDIO:
{
struct video_audio v;
memset(&v, 0, sizeof(v));
strcpy(v.name, "Radio");
if(copy_to_user(arg,&v, sizeof(v)))
return -EFAULT;
return 0;
}
case VIDIOCSAUDIO:
{
struct video_audio v;
if(copy_from_user(&v, arg, sizeof(v)))
return -EFAULT;
if(v.audio)
return -EINVAL;
return 0;
}
default:
return -ENOIOCTLCMD;
}
}
static void snd_tea575x_release(struct video_device *vfd)
{
}
/*
* initialize all the tea575x chips
*/
void snd_tea575x_init(tea575x_t *tea)
{
unsigned int val;
val = tea->ops->read(tea);
if (val == 0x1ffffff || val == 0) {
snd_printk(KERN_ERR "Cannot find TEA575x chip\n");
return;
}
memset(&tea->vd, 0, sizeof(tea->vd));
tea->vd.owner = tea->card->module;
strcpy(tea->vd.name, tea->tea5759 ? "TEA5759 radio" : "TEA5757 radio");
tea->vd.type = VID_TYPE_TUNER;
tea->vd.hardware = VID_HARDWARE_RTRACK; /* FIXME: assign new number */
tea->vd.release = snd_tea575x_release;
video_set_drvdata(&tea->vd, tea);
tea->vd.fops = &tea->fops;
tea->fops.owner = tea->card->module;
tea->fops.open = video_exclusive_open;
tea->fops.release = video_exclusive_release;
tea->fops.ioctl = snd_tea575x_ioctl;
if (video_register_device(&tea->vd, VFL_TYPE_RADIO, tea->dev_nr - 1) < 0) {
snd_printk(KERN_ERR "unable to register tea575x tuner\n");
return;
}
tea->vd_registered = 1;
tea->val = TEA575X_BIT_BAND_FM | TEA575X_BIT_SEARCH_10_40;
tea->freq = 90500 * 16; /* 90.5Mhz default */
snd_tea575x_set_freq(tea);
}
void snd_tea575x_exit(tea575x_t *tea)
{
if (tea->vd_registered) {
video_unregister_device(&tea->vd);
tea->vd_registered = 0;
}
}
static int __init alsa_tea575x_module_init(void)
{
return 0;
}
static void __exit alsa_tea575x_module_exit(void)
{
}
module_init(alsa_tea575x_module_init)
module_exit(alsa_tea575x_module_exit)
EXPORT_SYMBOL(snd_tea575x_init);
EXPORT_SYMBOL(snd_tea575x_exit);

369
sound/i2c/tea6330t.c Normal file
View File

@@ -0,0 +1,369 @@
/*
* Routines for control of the TEA6330T circuit via i2c bus
* Sound fader control circuit for car radios by Philips Semiconductors
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/tea6330t.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Routines for control of the TEA6330T circuit via i2c bus");
MODULE_LICENSE("GPL");
#define TEA6330T_ADDR (0x80>>1) /* fixed address */
#define TEA6330T_SADDR_VOLUME_LEFT 0x00 /* volume left */
#define TEA6330T_SADDR_VOLUME_RIGHT 0x01 /* volume right */
#define TEA6330T_SADDR_BASS 0x02 /* bass control */
#define TEA6330T_SADDR_TREBLE 0x03 /* treble control */
#define TEA6330T_SADDR_FADER 0x04 /* fader control */
#define TEA6330T_MFN 0x20 /* mute control for selected channels */
#define TEA6330T_FCH 0x10 /* select fader channels - front or rear */
#define TEA6330T_SADDR_AUDIO_SWITCH 0x05 /* audio switch */
#define TEA6330T_GMU 0x80 /* mute control, general mute */
#define TEA6330T_EQN 0x40 /* equalizer switchover (0=equalizer-on) */
int snd_tea6330t_detect(snd_i2c_bus_t *bus, int equalizer)
{
int res;
snd_i2c_lock(bus);
res = snd_i2c_probeaddr(bus, TEA6330T_ADDR);
snd_i2c_unlock(bus);
return res;
}
#if 0
static void snd_tea6330t_set(tea6330t_t *tea,
unsigned char addr, unsigned char value)
{
#if 0
printk("set - 0x%x/0x%x\n", addr, value);
#endif
snd_i2c_write(tea->bus, TEA6330T_ADDR, addr, value, 1);
}
#endif
#define TEA6330T_MASTER_VOLUME(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_tea6330t_info_master_volume, \
.get = snd_tea6330t_get_master_volume, .put = snd_tea6330t_put_master_volume }
static int snd_tea6330t_info_master_volume(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 43;
return 0;
}
static int snd_tea6330t_get_master_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
snd_i2c_lock(tea->bus);
ucontrol->value.integer.value[0] = tea->mleft - 0x14;
ucontrol->value.integer.value[1] = tea->mright - 0x14;
snd_i2c_unlock(tea->bus);
return 0;
}
static int snd_tea6330t_put_master_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
int change, count, err;
unsigned char bytes[3];
unsigned char val1, val2;
val1 = (ucontrol->value.integer.value[0] % 44) + 0x14;
val2 = (ucontrol->value.integer.value[1] % 44) + 0x14;
snd_i2c_lock(tea->bus);
change = val1 != tea->mleft || val2 != tea->mright;
tea->mleft = val1;
tea->mright = val2;
count = 0;
if (tea->regs[TEA6330T_SADDR_VOLUME_LEFT] != 0) {
bytes[count++] = TEA6330T_SADDR_VOLUME_LEFT;
bytes[count++] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] = tea->mleft;
}
if (tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] != 0) {
if (count == 0)
bytes[count++] = TEA6330T_SADDR_VOLUME_RIGHT;
bytes[count++] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] = tea->mright;
}
if (count > 0) {
if ((err = snd_i2c_sendbytes(tea->device, bytes, count)) < 0)
change = err;
}
snd_i2c_unlock(tea->bus);
return change;
}
#define TEA6330T_MASTER_SWITCH(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_tea6330t_info_master_switch, \
.get = snd_tea6330t_get_master_switch, .put = snd_tea6330t_put_master_switch }
static int snd_tea6330t_info_master_switch(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_tea6330t_get_master_switch(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
snd_i2c_lock(tea->bus);
ucontrol->value.integer.value[0] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] == 0 ? 0 : 1;
ucontrol->value.integer.value[1] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] == 0 ? 0 : 1;
snd_i2c_unlock(tea->bus);
return 0;
}
static int snd_tea6330t_put_master_switch(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
int change, err;
unsigned char bytes[3];
unsigned char oval1, oval2, val1, val2;
val1 = ucontrol->value.integer.value[0] & 1;
val2 = ucontrol->value.integer.value[1] & 1;
snd_i2c_lock(tea->bus);
oval1 = tea->regs[TEA6330T_SADDR_VOLUME_LEFT] == 0 ? 0 : 1;
oval2 = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] == 0 ? 0 : 1;
change = val1 != oval1 || val2 != oval2;
tea->regs[TEA6330T_SADDR_VOLUME_LEFT] = val1 ? tea->mleft : 0;
tea->regs[TEA6330T_SADDR_VOLUME_RIGHT] = val2 ? tea->mright : 0;
bytes[0] = TEA6330T_SADDR_VOLUME_LEFT;
bytes[1] = tea->regs[TEA6330T_SADDR_VOLUME_LEFT];
bytes[2] = tea->regs[TEA6330T_SADDR_VOLUME_RIGHT];
if ((err = snd_i2c_sendbytes(tea->device, bytes, 3)) < 0)
change = err;
snd_i2c_unlock(tea->bus);
return change;
}
#define TEA6330T_BASS(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_tea6330t_info_bass, \
.get = snd_tea6330t_get_bass, .put = snd_tea6330t_put_bass }
static int snd_tea6330t_info_bass(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = tea->max_bass;
return 0;
}
static int snd_tea6330t_get_bass(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = tea->bass;
return 0;
}
static int snd_tea6330t_put_bass(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
int change, err;
unsigned char bytes[2];
unsigned char val1;
val1 = ucontrol->value.integer.value[0] % (tea->max_bass + 1);
snd_i2c_lock(tea->bus);
tea->bass = val1;
val1 += tea->equalizer ? 7 : 3;
change = tea->regs[TEA6330T_SADDR_BASS] != val1;
bytes[0] = TEA6330T_SADDR_BASS;
bytes[1] = tea->regs[TEA6330T_SADDR_BASS] = val1;
if ((err = snd_i2c_sendbytes(tea->device, bytes, 2)) < 0)
change = err;
snd_i2c_unlock(tea->bus);
return change;
}
#define TEA6330T_TREBLE(xname, xindex) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_tea6330t_info_treble, \
.get = snd_tea6330t_get_treble, .put = snd_tea6330t_put_treble }
static int snd_tea6330t_info_treble(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = tea->max_treble;
return 0;
}
static int snd_tea6330t_get_treble(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = tea->treble;
return 0;
}
static int snd_tea6330t_put_treble(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
tea6330t_t *tea = snd_kcontrol_chip(kcontrol);
int change, err;
unsigned char bytes[2];
unsigned char val1;
val1 = ucontrol->value.integer.value[0] % (tea->max_treble + 1);
snd_i2c_lock(tea->bus);
tea->treble = val1;
val1 += 3;
change = tea->regs[TEA6330T_SADDR_TREBLE] != val1;
bytes[0] = TEA6330T_SADDR_TREBLE;
bytes[1] = tea->regs[TEA6330T_SADDR_TREBLE] = val1;
if ((err = snd_i2c_sendbytes(tea->device, bytes, 2)) < 0)
change = err;
snd_i2c_unlock(tea->bus);
return change;
}
static snd_kcontrol_new_t snd_tea6330t_controls[] = {
TEA6330T_MASTER_SWITCH("Master Playback Switch", 0),
TEA6330T_MASTER_VOLUME("Master Playback Volume", 0),
TEA6330T_BASS("Tone Control - Bass", 0),
TEA6330T_TREBLE("Tone Control - Treble", 0)
};
static void snd_tea6330_free(snd_i2c_device_t *device)
{
tea6330t_t *tea = device->private_data;
kfree(tea);
}
int snd_tea6330t_update_mixer(snd_card_t * card,
snd_i2c_bus_t *bus,
int equalizer, int fader)
{
snd_i2c_device_t *device;
tea6330t_t *tea;
snd_kcontrol_new_t *knew;
unsigned int idx;
int err = -ENOMEM;
u8 default_treble, default_bass;
unsigned char bytes[7];
tea = kcalloc(1, sizeof(*tea), GFP_KERNEL);
if (tea == NULL)
return -ENOMEM;
if ((err = snd_i2c_device_create(bus, "TEA6330T", TEA6330T_ADDR, &device)) < 0) {
kfree(tea);
return err;
}
tea->device = device;
tea->bus = bus;
tea->equalizer = equalizer;
tea->fader = fader;
device->private_data = tea;
device->private_free = snd_tea6330_free;
snd_i2c_lock(bus);
/* turn fader off and handle equalizer */
tea->regs[TEA6330T_SADDR_FADER] = 0x3f;
tea->regs[TEA6330T_SADDR_AUDIO_SWITCH] = equalizer ? 0 : TEA6330T_EQN;
/* initialize mixer */
if (!tea->equalizer) {
tea->max_bass = 9;
tea->max_treble = 8;
default_bass = 3 + 4;
tea->bass = 4;
default_treble = 3 + 4;
tea->treble = 4;
} else {
tea->max_bass = 5;
tea->max_treble = 0;
default_bass = 7 + 4;
tea->bass = 4;
default_treble = 3;
tea->treble = 0;
}
tea->mleft = tea->mright = 0x14;
tea->regs[TEA6330T_SADDR_BASS] = default_bass;
tea->regs[TEA6330T_SADDR_TREBLE] = default_treble;
/* compose I2C message and put the hardware to initial state */
bytes[0] = TEA6330T_SADDR_VOLUME_LEFT;
for (idx = 0; idx < 6; idx++)
bytes[idx+1] = tea->regs[idx];
if ((err = snd_i2c_sendbytes(device, bytes, 7)) < 0)
goto __error;
strcat(card->mixername, ",TEA6330T");
if ((err = snd_component_add(card, "TEA6330T")) < 0)
goto __error;
for (idx = 0; idx < ARRAY_SIZE(snd_tea6330t_controls); idx++) {
knew = &snd_tea6330t_controls[idx];
if (tea->treble == 0 && !strcmp(knew->name, "Tone Control - Treble"))
continue;
if ((err = snd_ctl_add(card, snd_ctl_new1(knew, tea))) < 0)
goto __error;
}
snd_i2c_unlock(bus);
return 0;
__error:
snd_i2c_unlock(bus);
snd_i2c_device_free(device);
return err;
}
EXPORT_SYMBOL(snd_tea6330t_detect);
EXPORT_SYMBOL(snd_tea6330t_update_mixer);
/*
* INIT part
*/
static int __init alsa_tea6330t_init(void)
{
return 0;
}
static void __exit alsa_tea6330t_exit(void)
{
}
module_init(alsa_tea6330t_init)
module_exit(alsa_tea6330t_exit)