[SPARC64]: Eliminate NR_CPUS limitations.
Cheetah systems can have cpuids as large as 1023, although physical systems don't have that many cpus. Only three limitations existed in the kernel preventing arbitrary NR_CPUS values: 1) dcache dirty cpu state stored in page->flags on D-cache aliasing platforms. With some build time calculations and some build-time BUG checks on page->flags layout, this one was easily solved. 2) The cheetah XCALL delivery code could only handle a cpumask with up to 32 cpus set. Some simple looping logic clears that up too. 3) thread_info->cpu was a u8, easily changed to a u16. There are a few spots in the kernel that still put NR_CPUS sized arrays on the kernel stack, but that's not a sparc64 specific problem. Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
@@ -202,7 +202,7 @@ extern struct sun4v_2insn_patch_entry __sun4v_2insn_patch,
|
||||
* the calculations done by the macro mid-stream.
|
||||
*/
|
||||
#define LOAD_PER_CPU_BASE(DEST, THR, REG1, REG2, REG3) \
|
||||
ldub [THR + TI_CPU], REG1; \
|
||||
lduh [THR + TI_CPU], REG1; \
|
||||
sethi %hi(__per_cpu_shift), REG3; \
|
||||
sethi %hi(__per_cpu_base), REG2; \
|
||||
ldx [REG3 + %lo(__per_cpu_shift)], REG3; \
|
||||
|
Reference in New Issue
Block a user