xfs: remove the i_new_size field in struct xfs_inode

Now that we use the VFS i_size field throughout XFS there is no need for the
i_new_size field any more given that the VFS i_size field gets updated
in ->write_end before unlocking the page, and thus is always uptodate when
writeback could see a page.  Removing i_new_size also has the advantage that
we will never have to trim back di_size during a failed buffered write,
given that it never gets updated past i_size.

Note that currently the generic direct I/O code only updates i_size after
calling our end_io handler, which requires a small workaround to make
sure di_size actually makes it to disk.  I hope to fix this properly in
the generic code.

A downside is that we lose the support for parallel non-overlapping O_DIRECT
appending writes that recently was added.  I don't think keeping the complex
and fragile i_new_size infrastructure for this is a good tradeoff - if we
really care about parallel appending writers we should investigate turning
the iolock into a range lock, which would also allow for parallel
non-overlapping buffered writers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This commit is contained in:
Christoph Hellwig
2011-12-18 20:00:12 +00:00
committed by Ben Myers
parent ce7ae151dd
commit 2813d682e8
5 changed files with 30 additions and 92 deletions

View File

@@ -111,8 +111,7 @@ xfs_ioend_new_eof(
xfs_fsize_t bsize;
bsize = ioend->io_offset + ioend->io_size;
isize = MAX(i_size_read(VFS_I(ip)), ip->i_new_size);
isize = MIN(isize, bsize);
isize = MIN(i_size_read(VFS_I(ip)), bsize);
return isize > ip->i_d.di_size ? isize : 0;
}
@@ -126,11 +125,7 @@ static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
}
/*
* Update on-disk file size now that data has been written to disk. The
* current in-memory file size is i_size. If a write is beyond eof i_new_size
* will be the intended file size until i_size is updated. If this write does
* not extend all the way to the valid file size then restrict this update to
* the end of the write.
* Update on-disk file size now that data has been written to disk.
*
* This function does not block as blocking on the inode lock in IO completion
* can lead to IO completion order dependency deadlocks.. If it can't get the
@@ -1278,6 +1273,15 @@ xfs_end_io_direct_write(
{
struct xfs_ioend *ioend = iocb->private;
/*
* While the generic direct I/O code updates the inode size, it does
* so only after the end_io handler is called, which means our
* end_io handler thinks the on-disk size is outside the in-core
* size. To prevent this just update it a little bit earlier here.
*/
if (offset + size > i_size_read(ioend->io_inode))
i_size_write(ioend->io_inode, offset + size);
/*
* blockdev_direct_IO can return an error even after the I/O
* completion handler was called. Thus we need to protect
@@ -1340,12 +1344,11 @@ xfs_vm_write_failed(
if (to > inode->i_size) {
/*
* punch out the delalloc blocks we have already allocated. We
* don't call xfs_setattr() to do this as we may be in the
* middle of a multi-iovec write and so the vfs inode->i_size
* will not match the xfs ip->i_size and so it will zero too
* much. Hence we jus truncate the page cache to zero what is
* necessary and punch the delalloc blocks directly.
* Punch out the delalloc blocks we have already allocated.
*
* Don't bother with xfs_setattr given that nothing can have
* made it to disk yet as the page is still locked at this
* point.
*/
struct xfs_inode *ip = XFS_I(inode);
xfs_fileoff_t start_fsb;