[MTD] NAND whitespace and formatting cleanup

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Thomas Gleixner
2006-05-23 11:50:56 +02:00
parent dcb0932884
commit 2c0a2bed92
2 changed files with 93 additions and 108 deletions

View File

@@ -10,7 +10,7 @@
* http://www.linux-mtd.infradead.org/tech/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002 Thomas Gleixner (tglx@linutronix.de)
* 2002 Thomas Gleixner (tglx@linutronix.de)
*
* 02-08-2004 tglx: support for strange chips, which cannot auto increment
* pages on read / read_oob
@@ -25,26 +25,30 @@
* 05-19-2004 tglx: Basic support for Renesas AG-AND chips
*
* 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
* among multiple independend devices. Suggestions and initial patch
* from Ben Dooks <ben-mtd@fluff.org>
* among multiple independend devices. Suggestions and initial
* patch from Ben Dooks <ben-mtd@fluff.org>
*
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
* Basically, any block not rewritten may lose data when surrounding blocks
* are rewritten many times. JFFS2 ensures this doesn't happen for blocks
* it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
* do not lose data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby block (which
* could itself go bad), use a page address 'mask' to select several blocks
* in the same area, and rewrite the BBT when any of them are erased.
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb"
* issue. Basically, any block not rewritten may lose data when
* surrounding blocks are rewritten many times. JFFS2 ensures
* this doesn't happen for blocks it uses, but the Bad Block
* Table(s) may not be rewritten. To ensure they do not lose
* data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby
* block (which could itself go bad), use a page address 'mask' to
* select several blocks in the same area, and rewrite the BBT
* when any of them are erased.
*
* 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
* AG-AND chips. If there was a sudden loss of power during an erase operation,
* a "device recovery" operation must be performed when power is restored
* to ensure correct operation.
* 01-03-2005 dmarlin: added support for the device recovery command sequence
* for Renesas AG-AND chips. If there was a sudden loss of power
* during an erase operation, a "device recovery" operation must
* be performed when power is restored to ensure correct
* operation.
*
* 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
* perform extra error status checks on erase and write failures. This required
* adding a wrapper function for nand_read_ecc.
* 01-20-2005 dmarlin: added support for optional hardware specific callback
* routine to perform extra error status checks on erase and write
* failures. This required adding a wrapper function for
* nand_read_ecc.
*
* 08-20-2005 vwool: suspend/resume added
*
@@ -132,32 +136,43 @@ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
size_t *retlen, u_char *buf, u_char *eccbuf,
struct nand_oobinfo *oobsel);
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
size_t *retlen, const u_char *buf, u_char *eccbuf,
struct nand_oobinfo *oobsel);
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen);
static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf,
struct nand_oobinfo *oobsel);
unsigned long count, loff_t to, size_t *retlen,
u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync(struct mtd_info *mtd);
/* Some internal functions */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, u_char * oob_buf,
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this,
int page, u_char * oob_buf,
struct nand_oobinfo *oobsel, int mode);
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this,
int page, int numpages, u_char *oob_buf,
struct nand_oobinfo *oobsel, int chipnr,
int oobmode);
#else
#define nand_verify_pages(...) (0)
#endif
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state);
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd,
int new_state);
/**
* nand_release_device - [GENERIC] release chip
@@ -424,14 +439,16 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
page = (int)ofs;
if (this->options & NAND_BUSWIDTH_16) {
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE,
page & this->pagemask);
bad = cpu_to_le16(this->read_word(mtd));
if (this->badblockpos & 0x1)
bad >>= 8;
if ((bad & 0xFF) != 0xff)
res = 1;
} else {
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos,
page & this->pagemask);
if (this->read_byte(mtd) != 0xff)
res = 1;
}
@@ -498,7 +515,8 @@ static int nand_check_wp(struct mtd_info *mtd)
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
int allowbbt)
{
struct nand_chip *this = mtd->priv;
@@ -540,7 +558,8 @@ static void nand_wait_ready(struct mtd_info *mtd)
* Send command to NAND device. This function is used for small page
* devices (256/512 Bytes per page)
*/
static void nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
static void nand_command(struct mtd_info *mtd, unsigned command, int column,
int page_addr)
{
register struct nand_chip *this = mtd->priv;
@@ -755,7 +774,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column,
*
* Get the device and lock it for exclusive access
*/
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
static int
nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
{
spinlock_t *lock = &this->controller->lock;
wait_queue_head_t *wq = &this->controller->wq;
@@ -942,7 +962,7 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int pag
* nand_verify_pages - [GENERIC] verify the chip contents after a write
* @mtd: MTD device structure
* @this: NAND chip structure
* @page: startpage inside the chip, must be called with (page & this->pagemask)
* @page: startpage inside the chip, must be called with (page & this->pagemask)
* @numpages: number of pages to verify
* @oob_buf: out of band data buffer
* @oobsel: out of band selecttion structre
@@ -2293,8 +2313,8 @@ static void nand_resume(struct mtd_info *mtd)
if (this->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
printk(KERN_ERR "resume() called for the chip which is not in suspended state\n");
printk(KERN_ERR "nand_resume() called for a chip which is not "
"in suspended state\n");
}
/*