dm: add persistent data library
The persistent-data library offers a re-usable framework for the storage and management of on-disk metadata in device-mapper targets. It's used by the thin-provisioning target in the next patch and in an upcoming hierarchical storage target. For further information, please read Documentation/device-mapper/persistent-data.txt Signed-off-by: Joe Thornber <thornber@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This commit is contained in:
committed by
Alasdair G Kergon
parent
95d402f057
commit
3241b1d3e0
84
Documentation/device-mapper/persistent-data.txt
Normal file
84
Documentation/device-mapper/persistent-data.txt
Normal file
@@ -0,0 +1,84 @@
|
||||
Introduction
|
||||
============
|
||||
|
||||
The more-sophisticated device-mapper targets require complex metadata
|
||||
that is managed in kernel. In late 2010 we were seeing that various
|
||||
different targets were rolling their own data strutures, for example:
|
||||
|
||||
- Mikulas Patocka's multisnap implementation
|
||||
- Heinz Mauelshagen's thin provisioning target
|
||||
- Another btree-based caching target posted to dm-devel
|
||||
- Another multi-snapshot target based on a design of Daniel Phillips
|
||||
|
||||
Maintaining these data structures takes a lot of work, so if possible
|
||||
we'd like to reduce the number.
|
||||
|
||||
The persistent-data library is an attempt to provide a re-usable
|
||||
framework for people who want to store metadata in device-mapper
|
||||
targets. It's currently used by the thin-provisioning target and an
|
||||
upcoming hierarchical storage target.
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
The main documentation is in the header files which can all be found
|
||||
under drivers/md/persistent-data.
|
||||
|
||||
The block manager
|
||||
-----------------
|
||||
|
||||
dm-block-manager.[hc]
|
||||
|
||||
This provides access to the data on disk in fixed sized-blocks. There
|
||||
is a read/write locking interface to prevent concurrent accesses, and
|
||||
keep data that is being used in the cache.
|
||||
|
||||
Clients of persistent-data are unlikely to use this directly.
|
||||
|
||||
The transaction manager
|
||||
-----------------------
|
||||
|
||||
dm-transaction-manager.[hc]
|
||||
|
||||
This restricts access to blocks and enforces copy-on-write semantics.
|
||||
The only way you can get hold of a writable block through the
|
||||
transaction manager is by shadowing an existing block (ie. doing
|
||||
copy-on-write) or allocating a fresh one. Shadowing is elided within
|
||||
the same transaction so performance is reasonable. The commit method
|
||||
ensures that all data is flushed before it writes the superblock.
|
||||
On power failure your metadata will be as it was when last committed.
|
||||
|
||||
The Space Maps
|
||||
--------------
|
||||
|
||||
dm-space-map.h
|
||||
dm-space-map-metadata.[hc]
|
||||
dm-space-map-disk.[hc]
|
||||
|
||||
On-disk data structures that keep track of reference counts of blocks.
|
||||
Also acts as the allocator of new blocks. Currently two
|
||||
implementations: a simpler one for managing blocks on a different
|
||||
device (eg. thinly-provisioned data blocks); and one for managing
|
||||
the metadata space. The latter is complicated by the need to store
|
||||
its own data within the space it's managing.
|
||||
|
||||
The data structures
|
||||
-------------------
|
||||
|
||||
dm-btree.[hc]
|
||||
dm-btree-remove.c
|
||||
dm-btree-spine.c
|
||||
dm-btree-internal.h
|
||||
|
||||
Currently there is only one data structure, a hierarchical btree.
|
||||
There are plans to add more. For example, something with an
|
||||
array-like interface would see a lot of use.
|
||||
|
||||
The btree is 'hierarchical' in that you can define it to be composed
|
||||
of nested btrees, and take multiple keys. For example, the
|
||||
thin-provisioning target uses a btree with two levels of nesting.
|
||||
The first maps a device id to a mapping tree, and that in turn maps a
|
||||
virtual block to a physical block.
|
||||
|
||||
Values stored in the btrees can have arbitrary size. Keys are always
|
||||
64bits, although nesting allows you to use multiple keys.
|
Reference in New Issue
Block a user