can: CAN Network device driver and Netlink interface
The CAN network device driver interface provides a generic interface to setup, configure and monitor CAN network devices. It exports a set of common data structures and functions, which all real CAN network device drivers should use. Please have a look to the SJA1000 or MSCAN driver to understand how to use them. The name of the module is can-dev.ko. Furthermore, it adds a Netlink interface allowing to configure the CAN device using the program "ip" from the iproute2 utility suite. For further information please check "Documentation/networking/can.txt" Signed-off-by: Wolfgang Grandegger <wg@grandegger.com> Signed-off-by: Oliver Hartkopp <oliver.hartkopp@volkswagen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
committed by
David S. Miller
parent
4261a2043f
commit
39549eef35
657
drivers/net/can/dev.c
Normal file
657
drivers/net/can/dev.c
Normal file
@@ -0,0 +1,657 @@
|
||||
/*
|
||||
* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
|
||||
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
|
||||
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the version 2 of the GNU General Public License
|
||||
* as published by the Free Software Foundation
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/if_arp.h>
|
||||
#include <linux/can.h>
|
||||
#include <linux/can/dev.h>
|
||||
#include <linux/can/netlink.h>
|
||||
#include <net/rtnetlink.h>
|
||||
|
||||
#define MOD_DESC "CAN device driver interface"
|
||||
|
||||
MODULE_DESCRIPTION(MOD_DESC);
|
||||
MODULE_LICENSE("GPL v2");
|
||||
MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
|
||||
|
||||
#ifdef CONFIG_CAN_CALC_BITTIMING
|
||||
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
|
||||
|
||||
/*
|
||||
* Bit-timing calculation derived from:
|
||||
*
|
||||
* Code based on LinCAN sources and H8S2638 project
|
||||
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
|
||||
* Copyright 2005 Stanislav Marek
|
||||
* email: pisa@cmp.felk.cvut.cz
|
||||
*
|
||||
* Calculates proper bit-timing parameters for a specified bit-rate
|
||||
* and sample-point, which can then be used to set the bit-timing
|
||||
* registers of the CAN controller. You can find more information
|
||||
* in the header file linux/can/netlink.h.
|
||||
*/
|
||||
static int can_update_spt(const struct can_bittiming_const *btc,
|
||||
int sampl_pt, int tseg, int *tseg1, int *tseg2)
|
||||
{
|
||||
*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
|
||||
if (*tseg2 < btc->tseg2_min)
|
||||
*tseg2 = btc->tseg2_min;
|
||||
if (*tseg2 > btc->tseg2_max)
|
||||
*tseg2 = btc->tseg2_max;
|
||||
*tseg1 = tseg - *tseg2;
|
||||
if (*tseg1 > btc->tseg1_max) {
|
||||
*tseg1 = btc->tseg1_max;
|
||||
*tseg2 = tseg - *tseg1;
|
||||
}
|
||||
return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
|
||||
}
|
||||
|
||||
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
const struct can_bittiming_const *btc = priv->bittiming_const;
|
||||
long rate, best_rate = 0;
|
||||
long best_error = 1000000000, error = 0;
|
||||
int best_tseg = 0, best_brp = 0, brp = 0;
|
||||
int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
|
||||
int spt_error = 1000, spt = 0, sampl_pt;
|
||||
u64 v64;
|
||||
|
||||
if (!priv->bittiming_const)
|
||||
return -ENOTSUPP;
|
||||
|
||||
/* Use CIA recommended sample points */
|
||||
if (bt->sample_point) {
|
||||
sampl_pt = bt->sample_point;
|
||||
} else {
|
||||
if (bt->bitrate > 800000)
|
||||
sampl_pt = 750;
|
||||
else if (bt->bitrate > 500000)
|
||||
sampl_pt = 800;
|
||||
else
|
||||
sampl_pt = 875;
|
||||
}
|
||||
|
||||
/* tseg even = round down, odd = round up */
|
||||
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
|
||||
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
|
||||
tsegall = 1 + tseg / 2;
|
||||
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
|
||||
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
|
||||
/* chose brp step which is possible in system */
|
||||
brp = (brp / btc->brp_inc) * btc->brp_inc;
|
||||
if ((brp < btc->brp_min) || (brp > btc->brp_max))
|
||||
continue;
|
||||
rate = priv->clock.freq / (brp * tsegall);
|
||||
error = bt->bitrate - rate;
|
||||
/* tseg brp biterror */
|
||||
if (error < 0)
|
||||
error = -error;
|
||||
if (error > best_error)
|
||||
continue;
|
||||
best_error = error;
|
||||
if (error == 0) {
|
||||
spt = can_update_spt(btc, sampl_pt, tseg / 2,
|
||||
&tseg1, &tseg2);
|
||||
error = sampl_pt - spt;
|
||||
if (error < 0)
|
||||
error = -error;
|
||||
if (error > spt_error)
|
||||
continue;
|
||||
spt_error = error;
|
||||
}
|
||||
best_tseg = tseg / 2;
|
||||
best_brp = brp;
|
||||
best_rate = rate;
|
||||
if (error == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (best_error) {
|
||||
/* Error in one-tenth of a percent */
|
||||
error = (best_error * 1000) / bt->bitrate;
|
||||
if (error > CAN_CALC_MAX_ERROR) {
|
||||
dev_err(dev->dev.parent,
|
||||
"bitrate error %ld.%ld%% too high\n",
|
||||
error / 10, error % 10);
|
||||
return -EDOM;
|
||||
} else {
|
||||
dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
|
||||
error / 10, error % 10);
|
||||
}
|
||||
}
|
||||
|
||||
/* real sample point */
|
||||
bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
|
||||
&tseg1, &tseg2);
|
||||
|
||||
v64 = (u64)best_brp * 1000000000UL;
|
||||
do_div(v64, priv->clock.freq);
|
||||
bt->tq = (u32)v64;
|
||||
bt->prop_seg = tseg1 / 2;
|
||||
bt->phase_seg1 = tseg1 - bt->prop_seg;
|
||||
bt->phase_seg2 = tseg2;
|
||||
bt->sjw = 1;
|
||||
bt->brp = best_brp;
|
||||
/* real bit-rate */
|
||||
bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else /* !CONFIG_CAN_CALC_BITTIMING */
|
||||
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
|
||||
{
|
||||
dev_err(dev->dev.parent, "bit-timing calculation not available\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
||||
|
||||
/*
|
||||
* Checks the validity of the specified bit-timing parameters prop_seg,
|
||||
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
|
||||
* prescaler value brp. You can find more information in the header
|
||||
* file linux/can/netlink.h.
|
||||
*/
|
||||
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
const struct can_bittiming_const *btc = priv->bittiming_const;
|
||||
int tseg1, alltseg;
|
||||
u64 brp64;
|
||||
|
||||
if (!priv->bittiming_const)
|
||||
return -ENOTSUPP;
|
||||
|
||||
tseg1 = bt->prop_seg + bt->phase_seg1;
|
||||
if (!bt->sjw)
|
||||
bt->sjw = 1;
|
||||
if (bt->sjw > btc->sjw_max ||
|
||||
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
|
||||
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
|
||||
return -ERANGE;
|
||||
|
||||
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
|
||||
if (btc->brp_inc > 1)
|
||||
do_div(brp64, btc->brp_inc);
|
||||
brp64 += 500000000UL - 1;
|
||||
do_div(brp64, 1000000000UL); /* the practicable BRP */
|
||||
if (btc->brp_inc > 1)
|
||||
brp64 *= btc->brp_inc;
|
||||
bt->brp = (u32)brp64;
|
||||
|
||||
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
|
||||
return -EINVAL;
|
||||
|
||||
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
|
||||
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
|
||||
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
int err;
|
||||
|
||||
/* Check if the CAN device has bit-timing parameters */
|
||||
if (priv->bittiming_const) {
|
||||
|
||||
/* Non-expert mode? Check if the bitrate has been pre-defined */
|
||||
if (!bt->tq)
|
||||
/* Determine bit-timing parameters */
|
||||
err = can_calc_bittiming(dev, bt);
|
||||
else
|
||||
/* Check bit-timing params and calculate proper brp */
|
||||
err = can_fixup_bittiming(dev, bt);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Local echo of CAN messages
|
||||
*
|
||||
* CAN network devices *should* support a local echo functionality
|
||||
* (see Documentation/networking/can.txt). To test the handling of CAN
|
||||
* interfaces that do not support the local echo both driver types are
|
||||
* implemented. In the case that the driver does not support the echo
|
||||
* the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
|
||||
* to perform the echo as a fallback solution.
|
||||
*/
|
||||
static void can_flush_echo_skb(struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
struct net_device_stats *stats = &dev->stats;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < CAN_ECHO_SKB_MAX; i++) {
|
||||
if (priv->echo_skb[i]) {
|
||||
kfree_skb(priv->echo_skb[i]);
|
||||
priv->echo_skb[i] = NULL;
|
||||
stats->tx_dropped++;
|
||||
stats->tx_aborted_errors++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Put the skb on the stack to be looped backed locally lateron
|
||||
*
|
||||
* The function is typically called in the start_xmit function
|
||||
* of the device driver. The driver must protect access to
|
||||
* priv->echo_skb, if necessary.
|
||||
*/
|
||||
void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, int idx)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
/* check flag whether this packet has to be looped back */
|
||||
if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
|
||||
kfree_skb(skb);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!priv->echo_skb[idx]) {
|
||||
struct sock *srcsk = skb->sk;
|
||||
|
||||
if (atomic_read(&skb->users) != 1) {
|
||||
struct sk_buff *old_skb = skb;
|
||||
|
||||
skb = skb_clone(old_skb, GFP_ATOMIC);
|
||||
kfree_skb(old_skb);
|
||||
if (!skb)
|
||||
return;
|
||||
} else
|
||||
skb_orphan(skb);
|
||||
|
||||
skb->sk = srcsk;
|
||||
|
||||
/* make settings for echo to reduce code in irq context */
|
||||
skb->protocol = htons(ETH_P_CAN);
|
||||
skb->pkt_type = PACKET_BROADCAST;
|
||||
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||||
skb->dev = dev;
|
||||
|
||||
/* save this skb for tx interrupt echo handling */
|
||||
priv->echo_skb[idx] = skb;
|
||||
} else {
|
||||
/* locking problem with netif_stop_queue() ?? */
|
||||
dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
|
||||
__func__);
|
||||
kfree_skb(skb);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(can_put_echo_skb);
|
||||
|
||||
/*
|
||||
* Get the skb from the stack and loop it back locally
|
||||
*
|
||||
* The function is typically called when the TX done interrupt
|
||||
* is handled in the device driver. The driver must protect
|
||||
* access to priv->echo_skb, if necessary.
|
||||
*/
|
||||
void can_get_echo_skb(struct net_device *dev, int idx)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
if ((dev->flags & IFF_ECHO) && priv->echo_skb[idx]) {
|
||||
netif_rx(priv->echo_skb[idx]);
|
||||
priv->echo_skb[idx] = NULL;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(can_get_echo_skb);
|
||||
|
||||
/*
|
||||
* CAN device restart for bus-off recovery
|
||||
*/
|
||||
void can_restart(unsigned long data)
|
||||
{
|
||||
struct net_device *dev = (struct net_device *)data;
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
struct net_device_stats *stats = &dev->stats;
|
||||
struct sk_buff *skb;
|
||||
struct can_frame *cf;
|
||||
int err;
|
||||
|
||||
BUG_ON(netif_carrier_ok(dev));
|
||||
|
||||
/*
|
||||
* No synchronization needed because the device is bus-off and
|
||||
* no messages can come in or go out.
|
||||
*/
|
||||
can_flush_echo_skb(dev);
|
||||
|
||||
/* send restart message upstream */
|
||||
skb = dev_alloc_skb(sizeof(struct can_frame));
|
||||
if (skb == NULL) {
|
||||
err = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
skb->dev = dev;
|
||||
skb->protocol = htons(ETH_P_CAN);
|
||||
cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
|
||||
memset(cf, 0, sizeof(struct can_frame));
|
||||
cf->can_id = CAN_ERR_FLAG | CAN_ERR_RESTARTED;
|
||||
cf->can_dlc = CAN_ERR_DLC;
|
||||
|
||||
netif_rx(skb);
|
||||
|
||||
dev->last_rx = jiffies;
|
||||
stats->rx_packets++;
|
||||
stats->rx_bytes += cf->can_dlc;
|
||||
|
||||
dev_dbg(dev->dev.parent, "restarted\n");
|
||||
priv->can_stats.restarts++;
|
||||
|
||||
/* Now restart the device */
|
||||
err = priv->do_set_mode(dev, CAN_MODE_START);
|
||||
|
||||
out:
|
||||
netif_carrier_on(dev);
|
||||
if (err)
|
||||
dev_err(dev->dev.parent, "Error %d during restart", err);
|
||||
}
|
||||
|
||||
int can_restart_now(struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
/*
|
||||
* A manual restart is only permitted if automatic restart is
|
||||
* disabled and the device is in the bus-off state
|
||||
*/
|
||||
if (priv->restart_ms)
|
||||
return -EINVAL;
|
||||
if (priv->state != CAN_STATE_BUS_OFF)
|
||||
return -EBUSY;
|
||||
|
||||
/* Runs as soon as possible in the timer context */
|
||||
mod_timer(&priv->restart_timer, jiffies);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* CAN bus-off
|
||||
*
|
||||
* This functions should be called when the device goes bus-off to
|
||||
* tell the netif layer that no more packets can be sent or received.
|
||||
* If enabled, a timer is started to trigger bus-off recovery.
|
||||
*/
|
||||
void can_bus_off(struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
dev_dbg(dev->dev.parent, "bus-off\n");
|
||||
|
||||
netif_carrier_off(dev);
|
||||
priv->can_stats.bus_off++;
|
||||
|
||||
if (priv->restart_ms)
|
||||
mod_timer(&priv->restart_timer,
|
||||
jiffies + (priv->restart_ms * HZ) / 1000);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(can_bus_off);
|
||||
|
||||
static void can_setup(struct net_device *dev)
|
||||
{
|
||||
dev->type = ARPHRD_CAN;
|
||||
dev->mtu = sizeof(struct can_frame);
|
||||
dev->hard_header_len = 0;
|
||||
dev->addr_len = 0;
|
||||
dev->tx_queue_len = 10;
|
||||
|
||||
/* New-style flags. */
|
||||
dev->flags = IFF_NOARP;
|
||||
dev->features = NETIF_F_NO_CSUM;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate and setup space for the CAN network device
|
||||
*/
|
||||
struct net_device *alloc_candev(int sizeof_priv)
|
||||
{
|
||||
struct net_device *dev;
|
||||
struct can_priv *priv;
|
||||
|
||||
dev = alloc_netdev(sizeof_priv, "can%d", can_setup);
|
||||
if (!dev)
|
||||
return NULL;
|
||||
|
||||
priv = netdev_priv(dev);
|
||||
|
||||
priv->state = CAN_STATE_STOPPED;
|
||||
|
||||
init_timer(&priv->restart_timer);
|
||||
|
||||
return dev;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(alloc_candev);
|
||||
|
||||
/*
|
||||
* Free space of the CAN network device
|
||||
*/
|
||||
void free_candev(struct net_device *dev)
|
||||
{
|
||||
free_netdev(dev);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(free_candev);
|
||||
|
||||
/*
|
||||
* Common open function when the device gets opened.
|
||||
*
|
||||
* This function should be called in the open function of the device
|
||||
* driver.
|
||||
*/
|
||||
int open_candev(struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
|
||||
dev_err(dev->dev.parent, "bit-timing not yet defined\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(open_candev);
|
||||
|
||||
/*
|
||||
* Common close function for cleanup before the device gets closed.
|
||||
*
|
||||
* This function should be called in the close function of the device
|
||||
* driver.
|
||||
*/
|
||||
void close_candev(struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
if (del_timer_sync(&priv->restart_timer))
|
||||
dev_put(dev);
|
||||
can_flush_echo_skb(dev);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(close_candev);
|
||||
|
||||
/*
|
||||
* CAN netlink interface
|
||||
*/
|
||||
static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
|
||||
[IFLA_CAN_STATE] = { .type = NLA_U32 },
|
||||
[IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
|
||||
[IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
|
||||
[IFLA_CAN_RESTART] = { .type = NLA_U32 },
|
||||
[IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
|
||||
[IFLA_CAN_BITTIMING_CONST]
|
||||
= { .len = sizeof(struct can_bittiming_const) },
|
||||
[IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
|
||||
};
|
||||
|
||||
static int can_changelink(struct net_device *dev,
|
||||
struct nlattr *tb[], struct nlattr *data[])
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
int err;
|
||||
|
||||
/* We need synchronization with dev->stop() */
|
||||
ASSERT_RTNL();
|
||||
|
||||
if (data[IFLA_CAN_CTRLMODE]) {
|
||||
struct can_ctrlmode *cm;
|
||||
|
||||
/* Do not allow changing controller mode while running */
|
||||
if (dev->flags & IFF_UP)
|
||||
return -EBUSY;
|
||||
cm = nla_data(data[IFLA_CAN_CTRLMODE]);
|
||||
priv->ctrlmode &= ~cm->mask;
|
||||
priv->ctrlmode |= cm->flags;
|
||||
}
|
||||
|
||||
if (data[IFLA_CAN_BITTIMING]) {
|
||||
struct can_bittiming bt;
|
||||
|
||||
/* Do not allow changing bittiming while running */
|
||||
if (dev->flags & IFF_UP)
|
||||
return -EBUSY;
|
||||
memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
|
||||
if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
|
||||
return -EINVAL;
|
||||
err = can_get_bittiming(dev, &bt);
|
||||
if (err)
|
||||
return err;
|
||||
memcpy(&priv->bittiming, &bt, sizeof(bt));
|
||||
|
||||
if (priv->do_set_bittiming) {
|
||||
/* Finally, set the bit-timing registers */
|
||||
err = priv->do_set_bittiming(dev);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
if (data[IFLA_CAN_RESTART_MS]) {
|
||||
/* Do not allow changing restart delay while running */
|
||||
if (dev->flags & IFF_UP)
|
||||
return -EBUSY;
|
||||
priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
|
||||
}
|
||||
|
||||
if (data[IFLA_CAN_RESTART]) {
|
||||
/* Do not allow a restart while not running */
|
||||
if (!(dev->flags & IFF_UP))
|
||||
return -EINVAL;
|
||||
err = can_restart_now(dev);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
struct can_ctrlmode cm = {.flags = priv->ctrlmode};
|
||||
enum can_state state = priv->state;
|
||||
|
||||
if (priv->do_get_state)
|
||||
priv->do_get_state(dev, &state);
|
||||
NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
|
||||
NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
|
||||
NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
|
||||
NLA_PUT(skb, IFLA_CAN_BITTIMING,
|
||||
sizeof(priv->bittiming), &priv->bittiming);
|
||||
NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
|
||||
if (priv->bittiming_const)
|
||||
NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
|
||||
sizeof(*priv->bittiming_const), priv->bittiming_const);
|
||||
|
||||
return 0;
|
||||
|
||||
nla_put_failure:
|
||||
return -EMSGSIZE;
|
||||
}
|
||||
|
||||
static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
|
||||
NLA_PUT(skb, IFLA_INFO_XSTATS,
|
||||
sizeof(priv->can_stats), &priv->can_stats);
|
||||
|
||||
return 0;
|
||||
|
||||
nla_put_failure:
|
||||
return -EMSGSIZE;
|
||||
}
|
||||
|
||||
static struct rtnl_link_ops can_link_ops __read_mostly = {
|
||||
.kind = "can",
|
||||
.maxtype = IFLA_CAN_MAX,
|
||||
.policy = can_policy,
|
||||
.setup = can_setup,
|
||||
.changelink = can_changelink,
|
||||
.fill_info = can_fill_info,
|
||||
.fill_xstats = can_fill_xstats,
|
||||
};
|
||||
|
||||
/*
|
||||
* Register the CAN network device
|
||||
*/
|
||||
int register_candev(struct net_device *dev)
|
||||
{
|
||||
dev->rtnl_link_ops = &can_link_ops;
|
||||
return register_netdev(dev);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(register_candev);
|
||||
|
||||
/*
|
||||
* Unregister the CAN network device
|
||||
*/
|
||||
void unregister_candev(struct net_device *dev)
|
||||
{
|
||||
unregister_netdev(dev);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unregister_candev);
|
||||
|
||||
static __init int can_dev_init(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = rtnl_link_register(&can_link_ops);
|
||||
if (!err)
|
||||
printk(KERN_INFO MOD_DESC "\n");
|
||||
|
||||
return err;
|
||||
}
|
||||
module_init(can_dev_init);
|
||||
|
||||
static __exit void can_dev_exit(void)
|
||||
{
|
||||
rtnl_link_unregister(&can_link_ops);
|
||||
}
|
||||
module_exit(can_dev_exit);
|
||||
|
||||
MODULE_ALIAS_RTNL_LINK("can");
|
Reference in New Issue
Block a user