[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
committed by
Linus Torvalds
parent
b38c6845b6
commit
4c21e2f244
11
mm/mremap.c
11
mm/mremap.c
@@ -72,7 +72,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
||||
struct address_space *mapping = NULL;
|
||||
struct mm_struct *mm = vma->vm_mm;
|
||||
pte_t *old_pte, *new_pte, pte;
|
||||
spinlock_t *old_ptl;
|
||||
spinlock_t *old_ptl, *new_ptl;
|
||||
|
||||
if (vma->vm_file) {
|
||||
/*
|
||||
@@ -88,8 +88,15 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
||||
new_vma->vm_truncate_count = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* We don't have to worry about the ordering of src and dst
|
||||
* pte locks because exclusive mmap_sem prevents deadlock.
|
||||
*/
|
||||
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
|
||||
new_pte = pte_offset_map_nested(new_pmd, new_addr);
|
||||
new_ptl = pte_lockptr(mm, new_pmd);
|
||||
if (new_ptl != old_ptl)
|
||||
spin_lock(new_ptl);
|
||||
|
||||
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
|
||||
new_pte++, new_addr += PAGE_SIZE) {
|
||||
@@ -101,6 +108,8 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
||||
set_pte_at(mm, new_addr, new_pte, pte);
|
||||
}
|
||||
|
||||
if (new_ptl != old_ptl)
|
||||
spin_unlock(new_ptl);
|
||||
pte_unmap_nested(new_pte - 1);
|
||||
pte_unmap_unlock(old_pte - 1, old_ptl);
|
||||
if (mapping)
|
||||
|
Reference in New Issue
Block a user