Merge branch 'clksrc' into devel

Conflicts:
	arch/arm/mach-vexpress/v2m.c
	arch/arm/plat-omap/counter_32k.c
	arch/arm/plat-versatile/Makefile
This commit is contained in:
Russell King
2011-01-05 18:09:03 +00:00
55 changed files with 3186 additions and 2857 deletions

View File

@@ -14,6 +14,7 @@ config ARM
select HAVE_FUNCTION_TRACER if (!XIP_KERNEL) select HAVE_FUNCTION_TRACER if (!XIP_KERNEL)
select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL) select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL)
select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL) select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL)
select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL)
select HAVE_GENERIC_DMA_COHERENT select HAVE_GENERIC_DMA_COHERENT
select HAVE_KERNEL_GZIP select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZO select HAVE_KERNEL_LZO
@@ -38,6 +39,9 @@ config HAVE_PWM
config SYS_SUPPORTS_APM_EMULATION config SYS_SUPPORTS_APM_EMULATION
bool bool
config HAVE_SCHED_CLOCK
bool
config GENERIC_GPIO config GENERIC_GPIO
bool bool
@@ -233,6 +237,7 @@ config ARCH_REALVIEW
bool "ARM Ltd. RealView family" bool "ARM Ltd. RealView family"
select ARM_AMBA select ARM_AMBA
select COMMON_CLKDEV select COMMON_CLKDEV
select HAVE_SCHED_CLOCK
select ICST select ICST
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select ARCH_WANT_OPTIONAL_GPIOLIB select ARCH_WANT_OPTIONAL_GPIOLIB
@@ -247,6 +252,7 @@ config ARCH_VERSATILE
select ARM_AMBA select ARM_AMBA
select ARM_VIC select ARM_VIC
select COMMON_CLKDEV select COMMON_CLKDEV
select HAVE_SCHED_CLOCK
select ICST select ICST
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select ARCH_WANT_OPTIONAL_GPIOLIB select ARCH_WANT_OPTIONAL_GPIOLIB
@@ -263,6 +269,7 @@ config ARCH_VEXPRESS
select COMMON_CLKDEV select COMMON_CLKDEV
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_CLK select HAVE_CLK
select HAVE_SCHED_CLOCK
select ICST select ICST
select PLAT_VERSATILE select PLAT_VERSATILE
help help
@@ -434,6 +441,7 @@ config ARCH_IXP4XX
select CPU_XSCALE select CPU_XSCALE
select GENERIC_GPIO select GENERIC_GPIO
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select DMABOUNCE if PCI select DMABOUNCE if PCI
help help
Support for Intel's IXP4XX (XScale) family of processors. Support for Intel's IXP4XX (XScale) family of processors.
@@ -509,6 +517,7 @@ config ARCH_MMP
select ARCH_REQUIRE_GPIOLIB select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV select COMMON_CLKDEV
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select TICK_ONESHOT select TICK_ONESHOT
select PLAT_PXA select PLAT_PXA
select SPARSE_IRQ select SPARSE_IRQ
@@ -565,6 +574,7 @@ config ARCH_TEGRA
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select GENERIC_GPIO select GENERIC_GPIO
select HAVE_CLK select HAVE_CLK
select HAVE_SCHED_CLOCK
select COMMON_CLKDEV select COMMON_CLKDEV
select ARCH_HAS_BARRIERS if CACHE_L2X0 select ARCH_HAS_BARRIERS if CACHE_L2X0
select ARCH_HAS_CPUFREQ select ARCH_HAS_CPUFREQ
@@ -588,6 +598,7 @@ config ARCH_PXA
select COMMON_CLKDEV select COMMON_CLKDEV
select ARCH_REQUIRE_GPIOLIB select ARCH_REQUIRE_GPIOLIB
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select TICK_ONESHOT select TICK_ONESHOT
select PLAT_PXA select PLAT_PXA
select SPARSE_IRQ select SPARSE_IRQ
@@ -636,6 +647,7 @@ config ARCH_SA1100
select CPU_FREQ select CPU_FREQ
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_CLK select HAVE_CLK
select HAVE_SCHED_CLOCK
select TICK_ONESHOT select TICK_ONESHOT
select ARCH_REQUIRE_GPIOLIB select ARCH_REQUIRE_GPIOLIB
help help
@@ -782,6 +794,7 @@ config ARCH_U300
bool "ST-Ericsson U300 Series" bool "ST-Ericsson U300 Series"
depends on MMU depends on MMU
select CPU_ARM926T select CPU_ARM926T
select HAVE_SCHED_CLOCK
select HAVE_TCM select HAVE_TCM
select ARM_AMBA select ARM_AMBA
select ARM_VIC select ARM_VIC
@@ -830,6 +843,7 @@ config ARCH_OMAP
select ARCH_REQUIRE_GPIOLIB select ARCH_REQUIRE_GPIOLIB
select ARCH_HAS_CPUFREQ select ARCH_HAS_CPUFREQ
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select ARCH_HAS_HOLES_MEMORYMODEL select ARCH_HAS_HOLES_MEMORYMODEL
help help
Support for TI's OMAP platform (OMAP1/2/3/4). Support for TI's OMAP platform (OMAP1/2/3/4).
@@ -983,9 +997,11 @@ config ARCH_ACORN
config PLAT_IOP config PLAT_IOP
bool bool
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
config PLAT_ORION config PLAT_ORION
bool bool
select HAVE_SCHED_CLOCK
config PLAT_PXA config PLAT_PXA
bool bool
@@ -1212,10 +1228,11 @@ config SMP
depends on EXPERIMENTAL depends on EXPERIMENTAL
depends on GENERIC_CLOCKEVENTS depends on GENERIC_CLOCKEVENTS
depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \ depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \
MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 ||\ MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 || \
ARCH_S5PV310 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 ARCH_S5PV310 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 || \
ARCH_MSM_SCORPIONMP
select USE_GENERIC_SMP_HELPERS select USE_GENERIC_SMP_HELPERS
select HAVE_ARM_SCU select HAVE_ARM_SCU if !ARCH_MSM_SCORPIONMP
help help
This enables support for systems with more than one CPU. If you have This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If a system with only one CPU, like most personal computers, say N. If
@@ -1290,6 +1307,7 @@ config NR_CPUS
config HOTPLUG_CPU config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs (EXPERIMENTAL)" bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
depends on SMP && HOTPLUG && EXPERIMENTAL depends on SMP && HOTPLUG && EXPERIMENTAL
depends on !ARCH_MSM
help help
Say Y here to experiment with turning CPUs off and on. CPUs Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu. can be controlled through /sys/devices/system/cpu.
@@ -1298,7 +1316,7 @@ config LOCAL_TIMERS
bool "Use local timer interrupts" bool "Use local timer interrupts"
depends on SMP depends on SMP
default y default y
select HAVE_ARM_TWD select HAVE_ARM_TWD if !ARCH_MSM_SCORPIONMP
help help
Enable support for local timers on SMP platforms, rather then the Enable support for local timers on SMP platforms, rather then the
legacy IPI broadcast method. Local timers allows the system legacy IPI broadcast method. Local timers allows the system

View File

@@ -23,7 +23,7 @@ config STRICT_DEVMEM
config FRAME_POINTER config FRAME_POINTER
bool bool
depends on !THUMB2_KERNEL depends on !THUMB2_KERNEL
default y if !ARM_UNWIND default y if !ARM_UNWIND || FUNCTION_GRAPH_TRACER
help help
If you say N here, the resulting kernel will be slightly smaller and If you say N here, the resulting kernel will be slightly smaller and
faster. However, if neither FRAME_POINTER nor ARM_UNWIND are enabled, faster. However, if neither FRAME_POINTER nor ARM_UNWIND are enabled,

View File

@@ -44,7 +44,6 @@ static struct clocksource clocksource_sp804 = {
.rating = 200, .rating = 200,
.read = sp804_read, .read = sp804_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -61,8 +60,7 @@ void __init sp804_clocksource_init(void __iomem *base)
writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
clksrc_base + TIMER_CTRL); clksrc_base + TIMER_CTRL);
cs->mult = clocksource_khz2mult(TIMER_FREQ_KHZ, cs->shift); clocksource_register_khz(cs, TIMER_FREQ_KHZ);
clocksource_register(cs);
} }

View File

@@ -0,0 +1,118 @@
/*
* sched_clock.h: support for extending counters to full 64-bit ns counter
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef ASM_SCHED_CLOCK
#define ASM_SCHED_CLOCK
#include <linux/kernel.h>
#include <linux/types.h>
struct clock_data {
u64 epoch_ns;
u32 epoch_cyc;
u32 epoch_cyc_copy;
u32 mult;
u32 shift;
};
#define DEFINE_CLOCK_DATA(name) struct clock_data name
static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
return (cyc * mult) >> shift;
}
/*
* Atomically update the sched_clock epoch. Your update callback will
* be called from a timer before the counter wraps - read the current
* counter value, and call this function to safely move the epochs
* forward. Only use this from the update callback.
*/
static inline void update_sched_clock(struct clock_data *cd, u32 cyc, u32 mask)
{
unsigned long flags;
u64 ns = cd->epoch_ns +
cyc_to_ns((cyc - cd->epoch_cyc) & mask, cd->mult, cd->shift);
/*
* Write epoch_cyc and epoch_ns in a way that the update is
* detectable in cyc_to_fixed_sched_clock().
*/
raw_local_irq_save(flags);
cd->epoch_cyc = cyc;
smp_wmb();
cd->epoch_ns = ns;
smp_wmb();
cd->epoch_cyc_copy = cyc;
raw_local_irq_restore(flags);
}
/*
* If your clock rate is known at compile time, using this will allow
* you to optimize the mult/shift loads away. This is paired with
* init_fixed_sched_clock() to ensure that your mult/shift are correct.
*/
static inline unsigned long long cyc_to_fixed_sched_clock(struct clock_data *cd,
u32 cyc, u32 mask, u32 mult, u32 shift)
{
u64 epoch_ns;
u32 epoch_cyc;
/*
* Load the epoch_cyc and epoch_ns atomically. We do this by
* ensuring that we always write epoch_cyc, epoch_ns and
* epoch_cyc_copy in strict order, and read them in strict order.
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
* the middle of an update, and we should repeat the load.
*/
do {
epoch_cyc = cd->epoch_cyc;
smp_rmb();
epoch_ns = cd->epoch_ns;
smp_rmb();
} while (epoch_cyc != cd->epoch_cyc_copy);
return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, mult, shift);
}
/*
* Otherwise, you need to use this, which will obtain the mult/shift
* from the clock_data structure. Use init_sched_clock() with this.
*/
static inline unsigned long long cyc_to_sched_clock(struct clock_data *cd,
u32 cyc, u32 mask)
{
return cyc_to_fixed_sched_clock(cd, cyc, mask, cd->mult, cd->shift);
}
/*
* Initialize the clock data - calculate the appropriate multiplier
* and shift. Also setup a timer to ensure that the epoch is refreshed
* at the appropriate time interval, which will call your update
* handler.
*/
void init_sched_clock(struct clock_data *, void (*)(void),
unsigned int, unsigned long);
/*
* Use this initialization function rather than init_sched_clock() if
* you're using cyc_to_fixed_sched_clock, which will warn if your
* constants are incorrect.
*/
static inline void init_fixed_sched_clock(struct clock_data *cd,
void (*update)(void), unsigned int bits, unsigned long rate,
u32 mult, u32 shift)
{
init_sched_clock(cd, update, bits, rate);
if (cd->mult != mult || cd->shift != shift) {
pr_crit("sched_clock: wrong multiply/shift: %u>>%u vs calculated %u>>%u\n"
"sched_clock: fix multiply/shift to avoid scheduler hiccups\n",
mult, shift, cd->mult, cd->shift);
}
}
#endif

View File

@@ -63,6 +63,11 @@
#include <asm/outercache.h> #include <asm/outercache.h>
#define __exception __attribute__((section(".exception.text"))) #define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#define __exception_irq_entry __irq_entry
#else
#define __exception_irq_entry __exception
#endif
struct thread_info; struct thread_info;
struct task_struct; struct task_struct;

View File

@@ -15,13 +15,32 @@ struct undef_hook {
void register_undef_hook(struct undef_hook *hook); void register_undef_hook(struct undef_hook *hook);
void unregister_undef_hook(struct undef_hook *hook); void unregister_undef_hook(struct undef_hook *hook);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static inline int __in_irqentry_text(unsigned long ptr)
{
extern char __irqentry_text_start[];
extern char __irqentry_text_end[];
return ptr >= (unsigned long)&__irqentry_text_start &&
ptr < (unsigned long)&__irqentry_text_end;
}
#else
static inline int __in_irqentry_text(unsigned long ptr)
{
return 0;
}
#endif
static inline int in_exception_text(unsigned long ptr) static inline int in_exception_text(unsigned long ptr)
{ {
extern char __exception_text_start[]; extern char __exception_text_start[];
extern char __exception_text_end[]; extern char __exception_text_end[];
int in;
return ptr >= (unsigned long)&__exception_text_start && in = ptr >= (unsigned long)&__exception_text_start &&
ptr < (unsigned long)&__exception_text_end; ptr < (unsigned long)&__exception_text_end;
return in ? : __in_irqentry_text(ptr);
} }
extern void __init early_trap_init(void); extern void __init early_trap_init(void);

View File

@@ -5,7 +5,7 @@
CPPFLAGS_vmlinux.lds := -DTEXT_OFFSET=$(TEXT_OFFSET) CPPFLAGS_vmlinux.lds := -DTEXT_OFFSET=$(TEXT_OFFSET)
AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET) AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
ifdef CONFIG_DYNAMIC_FTRACE ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_ftrace.o = -pg CFLAGS_REMOVE_ftrace.o = -pg
endif endif
@@ -29,10 +29,12 @@ obj-$(CONFIG_MODULES) += armksyms.o module.o
obj-$(CONFIG_ARTHUR) += arthur.o obj-$(CONFIG_ARTHUR) += arthur.o
obj-$(CONFIG_ISA_DMA) += dma-isa.o obj-$(CONFIG_ISA_DMA) += dma-isa.o
obj-$(CONFIG_PCI) += bios32.o isa.o obj-$(CONFIG_PCI) += bios32.o isa.o
obj-$(CONFIG_HAVE_SCHED_CLOCK) += sched_clock.o
obj-$(CONFIG_SMP) += smp.o obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_HAVE_ARM_SCU) += smp_scu.o obj-$(CONFIG_HAVE_ARM_SCU) += smp_scu.o
obj-$(CONFIG_HAVE_ARM_TWD) += smp_twd.o obj-$(CONFIG_HAVE_ARM_TWD) += smp_twd.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o
obj-$(CONFIG_KPROBES) += kprobes.o kprobes-decode.o obj-$(CONFIG_KPROBES) += kprobes.o kprobes-decode.o
obj-$(CONFIG_ATAGS_PROC) += atags.o obj-$(CONFIG_ATAGS_PROC) += atags.o

View File

@@ -147,98 +147,170 @@ ENDPROC(ret_from_fork)
#endif #endif
#endif #endif
#ifdef CONFIG_DYNAMIC_FTRACE .macro __mcount suffix
ENTRY(__gnu_mcount_nc) mcount_enter
mov ip, lr
ldmia sp!, {lr}
mov pc, ip
ENDPROC(__gnu_mcount_nc)
ENTRY(ftrace_caller)
stmdb sp!, {r0-r3, lr}
mov r0, lr
sub r0, r0, #MCOUNT_INSN_SIZE
ldr r1, [sp, #20]
.global ftrace_call
ftrace_call:
bl ftrace_stub
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
ENDPROC(ftrace_caller)
#ifdef CONFIG_OLD_MCOUNT
ENTRY(mcount)
stmdb sp!, {lr}
ldr lr, [fp, #-4]
ldmia sp!, {pc}
ENDPROC(mcount)
ENTRY(ftrace_caller_old)
stmdb sp!, {r0-r3, lr}
ldr r1, [fp, #-4]
mov r0, lr
sub r0, r0, #MCOUNT_INSN_SIZE
.globl ftrace_call_old
ftrace_call_old:
bl ftrace_stub
ldr lr, [fp, #-4] @ restore lr
ldmia sp!, {r0-r3, pc}
ENDPROC(ftrace_caller_old)
#endif
#else
ENTRY(__gnu_mcount_nc)
stmdb sp!, {r0-r3, lr}
ldr r0, =ftrace_trace_function ldr r0, =ftrace_trace_function
ldr r2, [r0] ldr r2, [r0]
adr r0, .Lftrace_stub adr r0, .Lftrace_stub
cmp r0, r2 cmp r0, r2
bne gnu_trace bne 1f
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
gnu_trace: #ifdef CONFIG_FUNCTION_GRAPH_TRACER
ldr r1, [sp, #20] @ lr of instrumented routine ldr r1, =ftrace_graph_return
mov r0, lr ldr r2, [r1]
cmp r0, r2
bne ftrace_graph_caller\suffix
ldr r1, =ftrace_graph_entry
ldr r2, [r1]
ldr r0, =ftrace_graph_entry_stub
cmp r0, r2
bne ftrace_graph_caller\suffix
#endif
mcount_exit
1: mcount_get_lr r1 @ lr of instrumented func
mov r0, lr @ instrumented function
sub r0, r0, #MCOUNT_INSN_SIZE sub r0, r0, #MCOUNT_INSN_SIZE
adr lr, BSYM(1f) adr lr, BSYM(2f)
mov pc, r2 mov pc, r2
1: 2: mcount_exit
ldmia sp!, {r0-r3, ip, lr} .endm
mov pc, ip
ENDPROC(__gnu_mcount_nc) .macro __ftrace_caller suffix
mcount_enter
mcount_get_lr r1 @ lr of instrumented func
mov r0, lr @ instrumented function
sub r0, r0, #MCOUNT_INSN_SIZE
.globl ftrace_call\suffix
ftrace_call\suffix:
bl ftrace_stub
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
.globl ftrace_graph_call\suffix
ftrace_graph_call\suffix:
mov r0, r0
#endif
mcount_exit
.endm
.macro __ftrace_graph_caller
sub r0, fp, #4 @ &lr of instrumented routine (&parent)
#ifdef CONFIG_DYNAMIC_FTRACE
@ called from __ftrace_caller, saved in mcount_enter
ldr r1, [sp, #16] @ instrumented routine (func)
#else
@ called from __mcount, untouched in lr
mov r1, lr @ instrumented routine (func)
#endif
sub r1, r1, #MCOUNT_INSN_SIZE
mov r2, fp @ frame pointer
bl prepare_ftrace_return
mcount_exit
.endm
#ifdef CONFIG_OLD_MCOUNT #ifdef CONFIG_OLD_MCOUNT
/* /*
* This is under an ifdef in order to force link-time errors for people trying * mcount
* to build with !FRAME_POINTER with a GCC which doesn't use the new-style
* mcount.
*/ */
ENTRY(mcount)
stmdb sp!, {r0-r3, lr}
ldr r0, =ftrace_trace_function
ldr r2, [r0]
adr r0, ftrace_stub
cmp r0, r2
bne trace
ldr lr, [fp, #-4] @ restore lr
ldmia sp!, {r0-r3, pc}
trace: .macro mcount_enter
ldr r1, [fp, #-4] @ lr of instrumented routine stmdb sp!, {r0-r3, lr}
mov r0, lr .endm
sub r0, r0, #MCOUNT_INSN_SIZE
mov lr, pc .macro mcount_get_lr reg
mov pc, r2 ldr \reg, [fp, #-4]
ldr lr, [fp, #-4] @ restore lr .endm
.macro mcount_exit
ldr lr, [fp, #-4]
ldmia sp!, {r0-r3, pc} ldmia sp!, {r0-r3, pc}
.endm
ENTRY(mcount)
#ifdef CONFIG_DYNAMIC_FTRACE
stmdb sp!, {lr}
ldr lr, [fp, #-4]
ldmia sp!, {pc}
#else
__mcount _old
#endif
ENDPROC(mcount) ENDPROC(mcount)
#ifdef CONFIG_DYNAMIC_FTRACE
ENTRY(ftrace_caller_old)
__ftrace_caller _old
ENDPROC(ftrace_caller_old)
#endif #endif
#endif /* CONFIG_DYNAMIC_FTRACE */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(ftrace_graph_caller_old)
__ftrace_graph_caller
ENDPROC(ftrace_graph_caller_old)
#endif
.purgem mcount_enter
.purgem mcount_get_lr
.purgem mcount_exit
#endif
/*
* __gnu_mcount_nc
*/
.macro mcount_enter
stmdb sp!, {r0-r3, lr}
.endm
.macro mcount_get_lr reg
ldr \reg, [sp, #20]
.endm
.macro mcount_exit
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
.endm
ENTRY(__gnu_mcount_nc)
#ifdef CONFIG_DYNAMIC_FTRACE
mov ip, lr
ldmia sp!, {lr}
mov pc, ip
#else
__mcount
#endif
ENDPROC(__gnu_mcount_nc)
#ifdef CONFIG_DYNAMIC_FTRACE
ENTRY(ftrace_caller)
__ftrace_caller
ENDPROC(ftrace_caller)
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(ftrace_graph_caller)
__ftrace_graph_caller
ENDPROC(ftrace_graph_caller)
#endif
.purgem mcount_enter
.purgem mcount_get_lr
.purgem mcount_exit
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
.globl return_to_handler
return_to_handler:
stmdb sp!, {r0-r3}
mov r0, fp @ frame pointer
bl ftrace_return_to_handler
mov lr, r0 @ r0 has real ret addr
ldmia sp!, {r0-r3}
mov pc, lr
#endif
ENTRY(ftrace_stub) ENTRY(ftrace_stub)
.Lftrace_stub: .Lftrace_stub:

View File

@@ -24,6 +24,7 @@
#define NOP 0xe8bd4000 /* pop {lr} */ #define NOP 0xe8bd4000 /* pop {lr} */
#endif #endif
#ifdef CONFIG_DYNAMIC_FTRACE
#ifdef CONFIG_OLD_MCOUNT #ifdef CONFIG_OLD_MCOUNT
#define OLD_MCOUNT_ADDR ((unsigned long) mcount) #define OLD_MCOUNT_ADDR ((unsigned long) mcount)
#define OLD_FTRACE_ADDR ((unsigned long) ftrace_caller_old) #define OLD_FTRACE_ADDR ((unsigned long) ftrace_caller_old)
@@ -59,9 +60,9 @@ static unsigned long adjust_address(struct dyn_ftrace *rec, unsigned long addr)
} }
#endif #endif
/* construct a branch (BL) instruction to addr */
#ifdef CONFIG_THUMB2_KERNEL #ifdef CONFIG_THUMB2_KERNEL
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr) static unsigned long ftrace_gen_branch(unsigned long pc, unsigned long addr,
bool link)
{ {
unsigned long s, j1, j2, i1, i2, imm10, imm11; unsigned long s, j1, j2, i1, i2, imm10, imm11;
unsigned long first, second; unsigned long first, second;
@@ -83,15 +84,22 @@ static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
j2 = (!i2) ^ s; j2 = (!i2) ^ s;
first = 0xf000 | (s << 10) | imm10; first = 0xf000 | (s << 10) | imm10;
second = 0xd000 | (j1 << 13) | (j2 << 11) | imm11; second = 0x9000 | (j1 << 13) | (j2 << 11) | imm11;
if (link)
second |= 1 << 14;
return (second << 16) | first; return (second << 16) | first;
} }
#else #else
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr) static unsigned long ftrace_gen_branch(unsigned long pc, unsigned long addr,
bool link)
{ {
unsigned long opcode = 0xea000000;
long offset; long offset;
if (link)
opcode |= 1 << 24;
offset = (long)addr - (long)(pc + 8); offset = (long)addr - (long)(pc + 8);
if (unlikely(offset < -33554432 || offset > 33554428)) { if (unlikely(offset < -33554432 || offset > 33554428)) {
/* Can't generate branches that far (from ARM ARM). Ftrace /* Can't generate branches that far (from ARM ARM). Ftrace
@@ -103,10 +111,15 @@ static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
offset = (offset >> 2) & 0x00ffffff; offset = (offset >> 2) & 0x00ffffff;
return 0xeb000000 | offset; return opcode | offset;
} }
#endif #endif
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
{
return ftrace_gen_branch(pc, addr, true);
}
static int ftrace_modify_code(unsigned long pc, unsigned long old, static int ftrace_modify_code(unsigned long pc, unsigned long old,
unsigned long new) unsigned long new)
{ {
@@ -193,3 +206,83 @@ int __init ftrace_dyn_arch_init(void *data)
return 0; return 0;
} }
#endif /* CONFIG_DYNAMIC_FTRACE */
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
unsigned long frame_pointer)
{
unsigned long return_hooker = (unsigned long) &return_to_handler;
struct ftrace_graph_ent trace;
unsigned long old;
int err;
if (unlikely(atomic_read(&current->tracing_graph_pause)))
return;
old = *parent;
*parent = return_hooker;
err = ftrace_push_return_trace(old, self_addr, &trace.depth,
frame_pointer);
if (err == -EBUSY) {
*parent = old;
return;
}
trace.func = self_addr;
/* Only trace if the calling function expects to */
if (!ftrace_graph_entry(&trace)) {
current->curr_ret_stack--;
*parent = old;
}
}
#ifdef CONFIG_DYNAMIC_FTRACE
extern unsigned long ftrace_graph_call;
extern unsigned long ftrace_graph_call_old;
extern void ftrace_graph_caller_old(void);
static int __ftrace_modify_caller(unsigned long *callsite,
void (*func) (void), bool enable)
{
unsigned long caller_fn = (unsigned long) func;
unsigned long pc = (unsigned long) callsite;
unsigned long branch = ftrace_gen_branch(pc, caller_fn, false);
unsigned long nop = 0xe1a00000; /* mov r0, r0 */
unsigned long old = enable ? nop : branch;
unsigned long new = enable ? branch : nop;
return ftrace_modify_code(pc, old, new);
}
static int ftrace_modify_graph_caller(bool enable)
{
int ret;
ret = __ftrace_modify_caller(&ftrace_graph_call,
ftrace_graph_caller,
enable);
#ifdef CONFIG_OLD_MCOUNT
if (!ret)
ret = __ftrace_modify_caller(&ftrace_graph_call_old,
ftrace_graph_caller_old,
enable);
#endif
return ret;
}
int ftrace_enable_ftrace_graph_caller(void)
{
return ftrace_modify_graph_caller(true);
}
int ftrace_disable_ftrace_graph_caller(void)
{
return ftrace_modify_graph_caller(false);
}
#endif /* CONFIG_DYNAMIC_FTRACE */
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */

View File

@@ -35,6 +35,7 @@
#include <linux/list.h> #include <linux/list.h>
#include <linux/kallsyms.h> #include <linux/kallsyms.h>
#include <linux/proc_fs.h> #include <linux/proc_fs.h>
#include <linux/ftrace.h>
#include <asm/system.h> #include <asm/system.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
@@ -105,7 +106,8 @@ unlock:
* come via this function. Instead, they should provide their * come via this function. Instead, they should provide their
* own 'handler' * own 'handler'
*/ */
asmlinkage void __exception asm_do_IRQ(unsigned int irq, struct pt_regs *regs) asmlinkage void __exception_irq_entry
asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
{ {
struct pt_regs *old_regs = set_irq_regs(regs); struct pt_regs *old_regs = set_irq_regs(regs);

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,672 @@
/*
* ARMv6 Performance counter handling code.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
*
* ARMv6 has 2 configurable performance counters and a single cycle counter.
* They all share a single reset bit but can be written to zero so we can use
* that for a reset.
*
* The counters can't be individually enabled or disabled so when we remove
* one event and replace it with another we could get spurious counts from the
* wrong event. However, we can take advantage of the fact that the
* performance counters can export events to the event bus, and the event bus
* itself can be monitored. This requires that we *don't* export the events to
* the event bus. The procedure for disabling a configurable counter is:
* - change the counter to count the ETMEXTOUT[0] signal (0x20). This
* effectively stops the counter from counting.
* - disable the counter's interrupt generation (each counter has it's
* own interrupt enable bit).
* Once stopped, the counter value can be written as 0 to reset.
*
* To enable a counter:
* - enable the counter's interrupt generation.
* - set the new event type.
*
* Note: the dedicated cycle counter only counts cycles and can't be
* enabled/disabled independently of the others. When we want to disable the
* cycle counter, we have to just disable the interrupt reporting and start
* ignoring that counter. When re-enabling, we have to reset the value and
* enable the interrupt.
*/
#ifdef CONFIG_CPU_V6
enum armv6_perf_types {
ARMV6_PERFCTR_ICACHE_MISS = 0x0,
ARMV6_PERFCTR_IBUF_STALL = 0x1,
ARMV6_PERFCTR_DDEP_STALL = 0x2,
ARMV6_PERFCTR_ITLB_MISS = 0x3,
ARMV6_PERFCTR_DTLB_MISS = 0x4,
ARMV6_PERFCTR_BR_EXEC = 0x5,
ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
ARMV6_PERFCTR_INSTR_EXEC = 0x7,
ARMV6_PERFCTR_DCACHE_HIT = 0x9,
ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
ARMV6_PERFCTR_DCACHE_MISS = 0xB,
ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
ARMV6_PERFCTR_NOP = 0x20,
};
enum armv6_counters {
ARMV6_CYCLE_COUNTER = 1,
ARMV6_COUNTER0,
ARMV6_COUNTER1,
};
/*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* The ARM performance counters can count micro DTLB misses,
* micro ITLB misses and main TLB misses. There isn't an event
* for TLB misses, so use the micro misses here and if users
* want the main TLB misses they can use a raw counter.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
enum armv6mpcore_perf_types {
ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
};
/*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] =
ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
[C(RESULT_MISS)] =
ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] =
ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
[C(RESULT_MISS)] =
ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* The ARM performance counters can count micro DTLB misses,
* micro ITLB misses and main TLB misses. There isn't an event
* for TLB misses, so use the micro misses here and if users
* want the main TLB misses they can use a raw counter.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
static inline unsigned long
armv6_pmcr_read(void)
{
u32 val;
asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
return val;
}
static inline void
armv6_pmcr_write(unsigned long val)
{
asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
}
#define ARMV6_PMCR_ENABLE (1 << 0)
#define ARMV6_PMCR_CTR01_RESET (1 << 1)
#define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
#define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
#define ARMV6_PMCR_COUNT0_IEN (1 << 4)
#define ARMV6_PMCR_COUNT1_IEN (1 << 5)
#define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
#define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
#define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
#define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
#define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
#define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
#define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
#define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
#define ARMV6_PMCR_OVERFLOWED_MASK \
(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
ARMV6_PMCR_CCOUNT_OVERFLOW)
static inline int
armv6_pmcr_has_overflowed(unsigned long pmcr)
{
return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
}
static inline int
armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
enum armv6_counters counter)
{
int ret = 0;
if (ARMV6_CYCLE_COUNTER == counter)
ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
else if (ARMV6_COUNTER0 == counter)
ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
else if (ARMV6_COUNTER1 == counter)
ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
return ret;
}
static inline u32
armv6pmu_read_counter(int counter)
{
unsigned long value = 0;
if (ARMV6_CYCLE_COUNTER == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
else if (ARMV6_COUNTER0 == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
else if (ARMV6_COUNTER1 == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
return value;
}
static inline void
armv6pmu_write_counter(int counter,
u32 value)
{
if (ARMV6_CYCLE_COUNTER == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
else if (ARMV6_COUNTER0 == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
else if (ARMV6_COUNTER1 == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
void
armv6pmu_enable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = 0;
evt = ARMV6_PMCR_CCOUNT_IEN;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_EVT_COUNT0_MASK;
evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
ARMV6_PMCR_COUNT0_IEN;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_EVT_COUNT1_MASK;
evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
ARMV6_PMCR_COUNT1_IEN;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Mask out the current event and set the counter to count the event
* that we're interested in.
*/
spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t
armv6pmu_handle_irq(int irq_num,
void *dev)
{
unsigned long pmcr = armv6_pmcr_read();
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
if (!armv6_pmcr_has_overflowed(pmcr))
return IRQ_NONE;
regs = get_irq_regs();
/*
* The interrupts are cleared by writing the overflow flags back to
* the control register. All of the other bits don't have any effect
* if they are rewritten, so write the whole value back.
*/
armv6_pmcr_write(pmcr);
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
irq_work_run();
return IRQ_HANDLED;
}
static void
armv6pmu_start(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val |= ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
armv6pmu_stop(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
/* Always place a cycle counter into the cycle counter. */
if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return ARMV6_CYCLE_COUNTER;
} else {
/*
* For anything other than a cycle counter, try and use
* counter0 and counter1.
*/
if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
return ARMV6_COUNTER1;
if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
return ARMV6_COUNTER0;
/* The counters are all in use. */
return -EAGAIN;
}
}
static void
armv6pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
evt = 0;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Mask out the current event and set the counter to count the number
* of ETM bus signal assertion cycles. The external reporting should
* be disabled and so this should never increment.
*/
spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, flags, evt = 0;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_COUNT0_IEN;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_COUNT1_IEN;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Unlike UP ARMv6, we don't have a way of stopping the counters. We
* simply disable the interrupt reporting.
*/
spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static const struct arm_pmu armv6pmu = {
.id = ARM_PERF_PMU_ID_V6,
.name = "v6",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6_perf_cache_map,
.event_map = &armv6_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
const struct arm_pmu *__init armv6pmu_init(void)
{
return &armv6pmu;
}
/*
* ARMv6mpcore is almost identical to single core ARMv6 with the exception
* that some of the events have different enumerations and that there is no
* *hack* to stop the programmable counters. To stop the counters we simply
* disable the interrupt reporting and update the event. When unthrottling we
* reset the period and enable the interrupt reporting.
*/
static const struct arm_pmu armv6mpcore_pmu = {
.id = ARM_PERF_PMU_ID_V6MP,
.name = "v6mpcore",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6mpcore_pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6mpcore_perf_cache_map,
.event_map = &armv6mpcore_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
const struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return &armv6mpcore_pmu;
}
#else
const struct arm_pmu *__init armv6pmu_init(void)
{
return NULL;
}
const struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_V6 */

View File

@@ -0,0 +1,906 @@
/*
* ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
*
* ARMv7 support: Jean Pihet <jpihet@mvista.com>
* 2010 (c) MontaVista Software, LLC.
*
* Copied from ARMv6 code, with the low level code inspired
* by the ARMv7 Oprofile code.
*
* Cortex-A8 has up to 4 configurable performance counters and
* a single cycle counter.
* Cortex-A9 has up to 31 configurable performance counters and
* a single cycle counter.
*
* All counters can be enabled/disabled and IRQ masked separately. The cycle
* counter and all 4 performance counters together can be reset separately.
*/
#ifdef CONFIG_CPU_V7
/* Common ARMv7 event types */
enum armv7_perf_types {
ARMV7_PERFCTR_PMNC_SW_INCR = 0x00,
ARMV7_PERFCTR_IFETCH_MISS = 0x01,
ARMV7_PERFCTR_ITLB_MISS = 0x02,
ARMV7_PERFCTR_DCACHE_REFILL = 0x03,
ARMV7_PERFCTR_DCACHE_ACCESS = 0x04,
ARMV7_PERFCTR_DTLB_REFILL = 0x05,
ARMV7_PERFCTR_DREAD = 0x06,
ARMV7_PERFCTR_DWRITE = 0x07,
ARMV7_PERFCTR_EXC_TAKEN = 0x09,
ARMV7_PERFCTR_EXC_EXECUTED = 0x0A,
ARMV7_PERFCTR_CID_WRITE = 0x0B,
/* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
* It counts:
* - all branch instructions,
* - instructions that explicitly write the PC,
* - exception generating instructions.
*/
ARMV7_PERFCTR_PC_WRITE = 0x0C,
ARMV7_PERFCTR_PC_IMM_BRANCH = 0x0D,
ARMV7_PERFCTR_UNALIGNED_ACCESS = 0x0F,
ARMV7_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
ARMV7_PERFCTR_CLOCK_CYCLES = 0x11,
ARMV7_PERFCTR_PC_BRANCH_MIS_USED = 0x12,
ARMV7_PERFCTR_CPU_CYCLES = 0xFF
};
/* ARMv7 Cortex-A8 specific event types */
enum armv7_a8_perf_types {
ARMV7_PERFCTR_INSTR_EXECUTED = 0x08,
ARMV7_PERFCTR_PC_PROC_RETURN = 0x0E,
ARMV7_PERFCTR_WRITE_BUFFER_FULL = 0x40,
ARMV7_PERFCTR_L2_STORE_MERGED = 0x41,
ARMV7_PERFCTR_L2_STORE_BUFF = 0x42,
ARMV7_PERFCTR_L2_ACCESS = 0x43,
ARMV7_PERFCTR_L2_CACH_MISS = 0x44,
ARMV7_PERFCTR_AXI_READ_CYCLES = 0x45,
ARMV7_PERFCTR_AXI_WRITE_CYCLES = 0x46,
ARMV7_PERFCTR_MEMORY_REPLAY = 0x47,
ARMV7_PERFCTR_UNALIGNED_ACCESS_REPLAY = 0x48,
ARMV7_PERFCTR_L1_DATA_MISS = 0x49,
ARMV7_PERFCTR_L1_INST_MISS = 0x4A,
ARMV7_PERFCTR_L1_DATA_COLORING = 0x4B,
ARMV7_PERFCTR_L1_NEON_DATA = 0x4C,
ARMV7_PERFCTR_L1_NEON_CACH_DATA = 0x4D,
ARMV7_PERFCTR_L2_NEON = 0x4E,
ARMV7_PERFCTR_L2_NEON_HIT = 0x4F,
ARMV7_PERFCTR_L1_INST = 0x50,
ARMV7_PERFCTR_PC_RETURN_MIS_PRED = 0x51,
ARMV7_PERFCTR_PC_BRANCH_FAILED = 0x52,
ARMV7_PERFCTR_PC_BRANCH_TAKEN = 0x53,
ARMV7_PERFCTR_PC_BRANCH_EXECUTED = 0x54,
ARMV7_PERFCTR_OP_EXECUTED = 0x55,
ARMV7_PERFCTR_CYCLES_INST_STALL = 0x56,
ARMV7_PERFCTR_CYCLES_INST = 0x57,
ARMV7_PERFCTR_CYCLES_NEON_DATA_STALL = 0x58,
ARMV7_PERFCTR_CYCLES_NEON_INST_STALL = 0x59,
ARMV7_PERFCTR_NEON_CYCLES = 0x5A,
ARMV7_PERFCTR_PMU0_EVENTS = 0x70,
ARMV7_PERFCTR_PMU1_EVENTS = 0x71,
ARMV7_PERFCTR_PMU_EVENTS = 0x72,
};
/* ARMv7 Cortex-A9 specific event types */
enum armv7_a9_perf_types {
ARMV7_PERFCTR_JAVA_HW_BYTECODE_EXEC = 0x40,
ARMV7_PERFCTR_JAVA_SW_BYTECODE_EXEC = 0x41,
ARMV7_PERFCTR_JAZELLE_BRANCH_EXEC = 0x42,
ARMV7_PERFCTR_COHERENT_LINE_MISS = 0x50,
ARMV7_PERFCTR_COHERENT_LINE_HIT = 0x51,
ARMV7_PERFCTR_ICACHE_DEP_STALL_CYCLES = 0x60,
ARMV7_PERFCTR_DCACHE_DEP_STALL_CYCLES = 0x61,
ARMV7_PERFCTR_TLB_MISS_DEP_STALL_CYCLES = 0x62,
ARMV7_PERFCTR_STREX_EXECUTED_PASSED = 0x63,
ARMV7_PERFCTR_STREX_EXECUTED_FAILED = 0x64,
ARMV7_PERFCTR_DATA_EVICTION = 0x65,
ARMV7_PERFCTR_ISSUE_STAGE_NO_INST = 0x66,
ARMV7_PERFCTR_ISSUE_STAGE_EMPTY = 0x67,
ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE = 0x68,
ARMV7_PERFCTR_PREDICTABLE_FUNCT_RETURNS = 0x6E,
ARMV7_PERFCTR_MAIN_UNIT_EXECUTED_INST = 0x70,
ARMV7_PERFCTR_SECOND_UNIT_EXECUTED_INST = 0x71,
ARMV7_PERFCTR_LD_ST_UNIT_EXECUTED_INST = 0x72,
ARMV7_PERFCTR_FP_EXECUTED_INST = 0x73,
ARMV7_PERFCTR_NEON_EXECUTED_INST = 0x74,
ARMV7_PERFCTR_PLD_FULL_DEP_STALL_CYCLES = 0x80,
ARMV7_PERFCTR_DATA_WR_DEP_STALL_CYCLES = 0x81,
ARMV7_PERFCTR_ITLB_MISS_DEP_STALL_CYCLES = 0x82,
ARMV7_PERFCTR_DTLB_MISS_DEP_STALL_CYCLES = 0x83,
ARMV7_PERFCTR_MICRO_ITLB_MISS_DEP_STALL_CYCLES = 0x84,
ARMV7_PERFCTR_MICRO_DTLB_MISS_DEP_STALL_CYCLES = 0x85,
ARMV7_PERFCTR_DMB_DEP_STALL_CYCLES = 0x86,
ARMV7_PERFCTR_INTGR_CLK_ENABLED_CYCLES = 0x8A,
ARMV7_PERFCTR_DATA_ENGINE_CLK_EN_CYCLES = 0x8B,
ARMV7_PERFCTR_ISB_INST = 0x90,
ARMV7_PERFCTR_DSB_INST = 0x91,
ARMV7_PERFCTR_DMB_INST = 0x92,
ARMV7_PERFCTR_EXT_INTERRUPTS = 0x93,
ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_COMPLETED = 0xA0,
ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_SKIPPED = 0xA1,
ARMV7_PERFCTR_PLE_FIFO_FLUSH = 0xA2,
ARMV7_PERFCTR_PLE_RQST_COMPLETED = 0xA3,
ARMV7_PERFCTR_PLE_FIFO_OVERFLOW = 0xA4,
ARMV7_PERFCTR_PLE_RQST_PROG = 0xA5
};
/*
* Cortex-A8 HW events mapping
*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv7_a8_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned armv7_a8_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* Only ITLB misses and DTLB refills are supported.
* If users want the DTLB refills misses a raw counter
* must be used.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
/*
* Cortex-A9 HW events mapping
*/
static const unsigned armv7_a9_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] =
ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_COHERENT_LINE_HIT,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_COHERENT_LINE_MISS,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned armv7_a9_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* Only ITLB misses and DTLB refills are supported.
* If users want the DTLB refills misses a raw counter
* must be used.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
/*
* Perf Events counters
*/
enum armv7_counters {
ARMV7_CYCLE_COUNTER = 1, /* Cycle counter */
ARMV7_COUNTER0 = 2, /* First event counter */
};
/*
* The cycle counter is ARMV7_CYCLE_COUNTER.
* The first event counter is ARMV7_COUNTER0.
* The last event counter is (ARMV7_COUNTER0 + armpmu->num_events - 1).
*/
#define ARMV7_COUNTER_LAST (ARMV7_COUNTER0 + armpmu->num_events - 1)
/*
* ARMv7 low level PMNC access
*/
/*
* Per-CPU PMNC: config reg
*/
#define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
#define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
#define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
#define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
#define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
#define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
#define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
#define ARMV7_PMNC_N_MASK 0x1f
#define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
/*
* Available counters
*/
#define ARMV7_CNT0 0 /* First event counter */
#define ARMV7_CCNT 31 /* Cycle counter */
/* Perf Event to low level counters mapping */
#define ARMV7_EVENT_CNT_TO_CNTx (ARMV7_COUNTER0 - ARMV7_CNT0)
/*
* CNTENS: counters enable reg
*/
#define ARMV7_CNTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_CNTENS_C (1 << ARMV7_CCNT)
/*
* CNTENC: counters disable reg
*/
#define ARMV7_CNTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_CNTENC_C (1 << ARMV7_CCNT)
/*
* INTENS: counters overflow interrupt enable reg
*/
#define ARMV7_INTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_INTENS_C (1 << ARMV7_CCNT)
/*
* INTENC: counters overflow interrupt disable reg
*/
#define ARMV7_INTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_INTENC_C (1 << ARMV7_CCNT)
/*
* EVTSEL: Event selection reg
*/
#define ARMV7_EVTSEL_MASK 0xff /* Mask for writable bits */
/*
* SELECT: Counter selection reg
*/
#define ARMV7_SELECT_MASK 0x1f /* Mask for writable bits */
/*
* FLAG: counters overflow flag status reg
*/
#define ARMV7_FLAG_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_FLAG_C (1 << ARMV7_CCNT)
#define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
#define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
static inline unsigned long armv7_pmnc_read(void)
{
u32 val;
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val));
return val;
}
static inline void armv7_pmnc_write(unsigned long val)
{
val &= ARMV7_PMNC_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val));
}
static inline int armv7_pmnc_has_overflowed(unsigned long pmnc)
{
return pmnc & ARMV7_OVERFLOWED_MASK;
}
static inline int armv7_pmnc_counter_has_overflowed(unsigned long pmnc,
enum armv7_counters counter)
{
int ret = 0;
if (counter == ARMV7_CYCLE_COUNTER)
ret = pmnc & ARMV7_FLAG_C;
else if ((counter >= ARMV7_COUNTER0) && (counter <= ARMV7_COUNTER_LAST))
ret = pmnc & ARMV7_FLAG_P(counter);
else
pr_err("CPU%u checking wrong counter %d overflow status\n",
smp_processor_id(), counter);
return ret;
}
static inline int armv7_pmnc_select_counter(unsigned int idx)
{
u32 val;
if ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST)) {
pr_err("CPU%u selecting wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
val = (idx - ARMV7_EVENT_CNT_TO_CNTx) & ARMV7_SELECT_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val));
return idx;
}
static inline u32 armv7pmu_read_counter(int idx)
{
unsigned long value = 0;
if (idx == ARMV7_CYCLE_COUNTER)
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value));
else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
if (armv7_pmnc_select_counter(idx) == idx)
asm volatile("mrc p15, 0, %0, c9, c13, 2"
: "=r" (value));
} else
pr_err("CPU%u reading wrong counter %d\n",
smp_processor_id(), idx);
return value;
}
static inline void armv7pmu_write_counter(int idx, u32 value)
{
if (idx == ARMV7_CYCLE_COUNTER)
asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value));
else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
if (armv7_pmnc_select_counter(idx) == idx)
asm volatile("mcr p15, 0, %0, c9, c13, 2"
: : "r" (value));
} else
pr_err("CPU%u writing wrong counter %d\n",
smp_processor_id(), idx);
}
static inline void armv7_pmnc_write_evtsel(unsigned int idx, u32 val)
{
if (armv7_pmnc_select_counter(idx) == idx) {
val &= ARMV7_EVTSEL_MASK;
asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val));
}
}
static inline u32 armv7_pmnc_enable_counter(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u enabling wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_CNTENS_C;
else
val = ARMV7_CNTENS_P(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_disable_counter(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u disabling wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_CNTENC_C;
else
val = ARMV7_CNTENC_P(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_enable_intens(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u enabling wrong PMNC counter"
" interrupt enable %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_INTENS_C;
else
val = ARMV7_INTENS_P(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_disable_intens(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u disabling wrong PMNC counter"
" interrupt enable %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_INTENC_C;
else
val = ARMV7_INTENC_P(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_getreset_flags(void)
{
u32 val;
/* Read */
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
/* Write to clear flags */
val &= ARMV7_FLAG_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val));
return val;
}
#ifdef DEBUG
static void armv7_pmnc_dump_regs(void)
{
u32 val;
unsigned int cnt;
printk(KERN_INFO "PMNC registers dump:\n");
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val));
printk(KERN_INFO "PMNC =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val));
printk(KERN_INFO "CNTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val));
printk(KERN_INFO "INTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
printk(KERN_INFO "FLAGS =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val));
printk(KERN_INFO "SELECT=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val));
printk(KERN_INFO "CCNT =0x%08x\n", val);
for (cnt = ARMV7_COUNTER0; cnt < ARMV7_COUNTER_LAST; cnt++) {
armv7_pmnc_select_counter(cnt);
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val));
printk(KERN_INFO "CNT[%d] count =0x%08x\n",
cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val));
printk(KERN_INFO "CNT[%d] evtsel=0x%08x\n",
cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
}
}
#endif
void armv7pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags;
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
spin_lock_irqsave(&pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Set event (if destined for PMNx counters)
* We don't need to set the event if it's a cycle count
*/
if (idx != ARMV7_CYCLE_COUNTER)
armv7_pmnc_write_evtsel(idx, hwc->config_base);
/*
* Enable interrupt for this counter
*/
armv7_pmnc_enable_intens(idx);
/*
* Enable counter
*/
armv7_pmnc_enable_counter(idx);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void armv7pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags;
/*
* Disable counter and interrupt
*/
spin_lock_irqsave(&pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Disable interrupt for this counter
*/
armv7_pmnc_disable_intens(idx);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/*
* Get and reset the IRQ flags
*/
pmnc = armv7_pmnc_getreset_flags();
/*
* Did an overflow occur?
*/
if (!armv7_pmnc_has_overflowed(pmnc))
return IRQ_NONE;
/*
* Handle the counter(s) overflow(s)
*/
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv7_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
irq_work_run();
return IRQ_HANDLED;
}
static void armv7pmu_start(void)
{
unsigned long flags;
spin_lock_irqsave(&pmu_lock, flags);
/* Enable all counters */
armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void armv7pmu_stop(void)
{
unsigned long flags;
spin_lock_irqsave(&pmu_lock, flags);
/* Disable all counters */
armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static int armv7pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
int idx;
/* Always place a cycle counter into the cycle counter. */
if (event->config_base == ARMV7_PERFCTR_CPU_CYCLES) {
if (test_and_set_bit(ARMV7_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return ARMV7_CYCLE_COUNTER;
} else {
/*
* For anything other than a cycle counter, try and use
* the events counters
*/
for (idx = ARMV7_COUNTER0; idx <= armpmu->num_events; ++idx) {
if (!test_and_set_bit(idx, cpuc->used_mask))
return idx;
}
/* The counters are all in use. */
return -EAGAIN;
}
}
static struct arm_pmu armv7pmu = {
.handle_irq = armv7pmu_handle_irq,
.enable = armv7pmu_enable_event,
.disable = armv7pmu_disable_event,
.read_counter = armv7pmu_read_counter,
.write_counter = armv7pmu_write_counter,
.get_event_idx = armv7pmu_get_event_idx,
.start = armv7pmu_start,
.stop = armv7pmu_stop,
.raw_event_mask = 0xFF,
.max_period = (1LLU << 32) - 1,
};
static u32 __init armv7_reset_read_pmnc(void)
{
u32 nb_cnt;
/* Initialize & Reset PMNC: C and P bits */
armv7_pmnc_write(ARMV7_PMNC_P | ARMV7_PMNC_C);
/* Read the nb of CNTx counters supported from PMNC */
nb_cnt = (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT) & ARMV7_PMNC_N_MASK;
/* Add the CPU cycles counter and return */
return nb_cnt + 1;
}
const struct arm_pmu *__init armv7_a8_pmu_init(void)
{
armv7pmu.id = ARM_PERF_PMU_ID_CA8;
armv7pmu.name = "ARMv7 Cortex-A8";
armv7pmu.cache_map = &armv7_a8_perf_cache_map;
armv7pmu.event_map = &armv7_a8_perf_map;
armv7pmu.num_events = armv7_reset_read_pmnc();
return &armv7pmu;
}
const struct arm_pmu *__init armv7_a9_pmu_init(void)
{
armv7pmu.id = ARM_PERF_PMU_ID_CA9;
armv7pmu.name = "ARMv7 Cortex-A9";
armv7pmu.cache_map = &armv7_a9_perf_cache_map;
armv7pmu.event_map = &armv7_a9_perf_map;
armv7pmu.num_events = armv7_reset_read_pmnc();
return &armv7pmu;
}
#else
const struct arm_pmu *__init armv7_a8_pmu_init(void)
{
return NULL;
}
const struct arm_pmu *__init armv7_a9_pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_V7 */

View File

@@ -0,0 +1,807 @@
/*
* ARMv5 [xscale] Performance counter handling code.
*
* Copyright (C) 2010, ARM Ltd., Will Deacon <will.deacon@arm.com>
*
* Based on the previous xscale OProfile code.
*
* There are two variants of the xscale PMU that we support:
* - xscale1pmu: 2 event counters and a cycle counter
* - xscale2pmu: 4 event counters and a cycle counter
* The two variants share event definitions, but have different
* PMU structures.
*/
#ifdef CONFIG_CPU_XSCALE
enum xscale_perf_types {
XSCALE_PERFCTR_ICACHE_MISS = 0x00,
XSCALE_PERFCTR_ICACHE_NO_DELIVER = 0x01,
XSCALE_PERFCTR_DATA_STALL = 0x02,
XSCALE_PERFCTR_ITLB_MISS = 0x03,
XSCALE_PERFCTR_DTLB_MISS = 0x04,
XSCALE_PERFCTR_BRANCH = 0x05,
XSCALE_PERFCTR_BRANCH_MISS = 0x06,
XSCALE_PERFCTR_INSTRUCTION = 0x07,
XSCALE_PERFCTR_DCACHE_FULL_STALL = 0x08,
XSCALE_PERFCTR_DCACHE_FULL_STALL_CONTIG = 0x09,
XSCALE_PERFCTR_DCACHE_ACCESS = 0x0A,
XSCALE_PERFCTR_DCACHE_MISS = 0x0B,
XSCALE_PERFCTR_DCACHE_WRITE_BACK = 0x0C,
XSCALE_PERFCTR_PC_CHANGED = 0x0D,
XSCALE_PERFCTR_BCU_REQUEST = 0x10,
XSCALE_PERFCTR_BCU_FULL = 0x11,
XSCALE_PERFCTR_BCU_DRAIN = 0x12,
XSCALE_PERFCTR_BCU_ECC_NO_ELOG = 0x14,
XSCALE_PERFCTR_BCU_1_BIT_ERR = 0x15,
XSCALE_PERFCTR_RMW = 0x16,
/* XSCALE_PERFCTR_CCNT is not hardware defined */
XSCALE_PERFCTR_CCNT = 0xFE,
XSCALE_PERFCTR_UNUSED = 0xFF,
};
enum xscale_counters {
XSCALE_CYCLE_COUNTER = 1,
XSCALE_COUNTER0,
XSCALE_COUNTER1,
XSCALE_COUNTER2,
XSCALE_COUNTER3,
};
static const unsigned xscale_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = XSCALE_PERFCTR_CCNT,
[PERF_COUNT_HW_INSTRUCTIONS] = XSCALE_PERFCTR_INSTRUCTION,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = XSCALE_PERFCTR_BRANCH,
[PERF_COUNT_HW_BRANCH_MISSES] = XSCALE_PERFCTR_BRANCH_MISS,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned xscale_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
#define XSCALE_PMU_ENABLE 0x001
#define XSCALE_PMN_RESET 0x002
#define XSCALE_CCNT_RESET 0x004
#define XSCALE_PMU_RESET (CCNT_RESET | PMN_RESET)
#define XSCALE_PMU_CNT64 0x008
#define XSCALE1_OVERFLOWED_MASK 0x700
#define XSCALE1_CCOUNT_OVERFLOW 0x400
#define XSCALE1_COUNT0_OVERFLOW 0x100
#define XSCALE1_COUNT1_OVERFLOW 0x200
#define XSCALE1_CCOUNT_INT_EN 0x040
#define XSCALE1_COUNT0_INT_EN 0x010
#define XSCALE1_COUNT1_INT_EN 0x020
#define XSCALE1_COUNT0_EVT_SHFT 12
#define XSCALE1_COUNT0_EVT_MASK (0xff << XSCALE1_COUNT0_EVT_SHFT)
#define XSCALE1_COUNT1_EVT_SHFT 20
#define XSCALE1_COUNT1_EVT_MASK (0xff << XSCALE1_COUNT1_EVT_SHFT)
static inline u32
xscale1pmu_read_pmnc(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c0, c0, 0" : "=r" (val));
return val;
}
static inline void
xscale1pmu_write_pmnc(u32 val)
{
/* upper 4bits and 7, 11 are write-as-0 */
val &= 0xffff77f;
asm volatile("mcr p14, 0, %0, c0, c0, 0" : : "r" (val));
}
static inline int
xscale1_pmnc_counter_has_overflowed(unsigned long pmnc,
enum xscale_counters counter)
{
int ret = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
ret = pmnc & XSCALE1_CCOUNT_OVERFLOW;
break;
case XSCALE_COUNTER0:
ret = pmnc & XSCALE1_COUNT0_OVERFLOW;
break;
case XSCALE_COUNTER1:
ret = pmnc & XSCALE1_COUNT1_OVERFLOW;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
return ret;
}
static irqreturn_t
xscale1pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/*
* NOTE: there's an A stepping erratum that states if an overflow
* bit already exists and another occurs, the previous
* Overflow bit gets cleared. There's no workaround.
* Fixed in B stepping or later.
*/
pmnc = xscale1pmu_read_pmnc();
/*
* Write the value back to clear the overflow flags. Overflow
* flags remain in pmnc for use below. We also disable the PMU
* while we process the interrupt.
*/
xscale1pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
if (!(pmnc & XSCALE1_OVERFLOWED_MASK))
return IRQ_NONE;
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale1_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
irq_work_run();
/*
* Re-enable the PMU.
*/
pmnc = xscale1pmu_read_pmnc() | XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void
xscale1pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
switch (idx) {
case XSCALE_CYCLE_COUNTER:
mask = 0;
evt = XSCALE1_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
mask = XSCALE1_COUNT0_EVT_MASK;
evt = (hwc->config_base << XSCALE1_COUNT0_EVT_SHFT) |
XSCALE1_COUNT0_INT_EN;
break;
case XSCALE_COUNTER1:
mask = XSCALE1_COUNT1_EVT_MASK;
evt = (hwc->config_base << XSCALE1_COUNT1_EVT_SHFT) |
XSCALE1_COUNT1_INT_EN;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale1pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
switch (idx) {
case XSCALE_CYCLE_COUNTER:
mask = XSCALE1_CCOUNT_INT_EN;
evt = 0;
break;
case XSCALE_COUNTER0:
mask = XSCALE1_COUNT0_INT_EN | XSCALE1_COUNT0_EVT_MASK;
evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
mask = XSCALE1_COUNT1_INT_EN | XSCALE1_COUNT1_EVT_MASK;
evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT1_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
xscale1pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
if (XSCALE_PERFCTR_CCNT == event->config_base) {
if (test_and_set_bit(XSCALE_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return XSCALE_CYCLE_COUNTER;
} else {
if (!test_and_set_bit(XSCALE_COUNTER1, cpuc->used_mask))
return XSCALE_COUNTER1;
if (!test_and_set_bit(XSCALE_COUNTER0, cpuc->used_mask))
return XSCALE_COUNTER0;
return -EAGAIN;
}
}
static void
xscale1pmu_start(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val |= XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale1pmu_stop(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static inline u32
xscale1pmu_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
break;
}
return val;
}
static inline void
xscale1pmu_write_counter(int counter, u32 val)
{
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mcr p14, 0, %0, c1, c0, 0" : : "r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mcr p14, 0, %0, c2, c0, 0" : : "r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mcr p14, 0, %0, c3, c0, 0" : : "r" (val));
break;
}
}
static const struct arm_pmu xscale1pmu = {
.id = ARM_PERF_PMU_ID_XSCALE1,
.name = "xscale1",
.handle_irq = xscale1pmu_handle_irq,
.enable = xscale1pmu_enable_event,
.disable = xscale1pmu_disable_event,
.read_counter = xscale1pmu_read_counter,
.write_counter = xscale1pmu_write_counter,
.get_event_idx = xscale1pmu_get_event_idx,
.start = xscale1pmu_start,
.stop = xscale1pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
const struct arm_pmu *__init xscale1pmu_init(void)
{
return &xscale1pmu;
}
#define XSCALE2_OVERFLOWED_MASK 0x01f
#define XSCALE2_CCOUNT_OVERFLOW 0x001
#define XSCALE2_COUNT0_OVERFLOW 0x002
#define XSCALE2_COUNT1_OVERFLOW 0x004
#define XSCALE2_COUNT2_OVERFLOW 0x008
#define XSCALE2_COUNT3_OVERFLOW 0x010
#define XSCALE2_CCOUNT_INT_EN 0x001
#define XSCALE2_COUNT0_INT_EN 0x002
#define XSCALE2_COUNT1_INT_EN 0x004
#define XSCALE2_COUNT2_INT_EN 0x008
#define XSCALE2_COUNT3_INT_EN 0x010
#define XSCALE2_COUNT0_EVT_SHFT 0
#define XSCALE2_COUNT0_EVT_MASK (0xff << XSCALE2_COUNT0_EVT_SHFT)
#define XSCALE2_COUNT1_EVT_SHFT 8
#define XSCALE2_COUNT1_EVT_MASK (0xff << XSCALE2_COUNT1_EVT_SHFT)
#define XSCALE2_COUNT2_EVT_SHFT 16
#define XSCALE2_COUNT2_EVT_MASK (0xff << XSCALE2_COUNT2_EVT_SHFT)
#define XSCALE2_COUNT3_EVT_SHFT 24
#define XSCALE2_COUNT3_EVT_MASK (0xff << XSCALE2_COUNT3_EVT_SHFT)
static inline u32
xscale2pmu_read_pmnc(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (val));
/* bits 1-2 and 4-23 are read-unpredictable */
return val & 0xff000009;
}
static inline void
xscale2pmu_write_pmnc(u32 val)
{
/* bits 4-23 are write-as-0, 24-31 are write ignored */
val &= 0xf;
asm volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (val));
}
static inline u32
xscale2pmu_read_overflow_flags(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (val));
return val;
}
static inline void
xscale2pmu_write_overflow_flags(u32 val)
{
asm volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (val));
}
static inline u32
xscale2pmu_read_event_select(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (val));
return val;
}
static inline void
xscale2pmu_write_event_select(u32 val)
{
asm volatile("mcr p14, 0, %0, c8, c1, 0" : : "r"(val));
}
static inline u32
xscale2pmu_read_int_enable(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (val));
return val;
}
static void
xscale2pmu_write_int_enable(u32 val)
{
asm volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (val));
}
static inline int
xscale2_pmnc_counter_has_overflowed(unsigned long of_flags,
enum xscale_counters counter)
{
int ret = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
ret = of_flags & XSCALE2_CCOUNT_OVERFLOW;
break;
case XSCALE_COUNTER0:
ret = of_flags & XSCALE2_COUNT0_OVERFLOW;
break;
case XSCALE_COUNTER1:
ret = of_flags & XSCALE2_COUNT1_OVERFLOW;
break;
case XSCALE_COUNTER2:
ret = of_flags & XSCALE2_COUNT2_OVERFLOW;
break;
case XSCALE_COUNTER3:
ret = of_flags & XSCALE2_COUNT3_OVERFLOW;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
return ret;
}
static irqreturn_t
xscale2pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc, of_flags;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/* Disable the PMU. */
pmnc = xscale2pmu_read_pmnc();
xscale2pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
/* Check the overflow flag register. */
of_flags = xscale2pmu_read_overflow_flags();
if (!(of_flags & XSCALE2_OVERFLOWED_MASK))
return IRQ_NONE;
/* Clear the overflow bits. */
xscale2pmu_write_overflow_flags(of_flags);
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale2_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
irq_work_run();
/*
* Re-enable the PMU.
*/
pmnc = xscale2pmu_read_pmnc() | XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void
xscale2pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
ien |= XSCALE2_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
ien |= XSCALE2_COUNT0_INT_EN;
evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
ien |= XSCALE2_COUNT1_INT_EN;
evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT1_EVT_SHFT;
break;
case XSCALE_COUNTER2:
ien |= XSCALE2_COUNT2_INT_EN;
evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT2_EVT_SHFT;
break;
case XSCALE_COUNTER3:
ien |= XSCALE2_COUNT3_INT_EN;
evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT3_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
spin_lock_irqsave(&pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale2pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
ien &= ~XSCALE2_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
ien &= ~XSCALE2_COUNT0_INT_EN;
evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
ien &= ~XSCALE2_COUNT1_INT_EN;
evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT1_EVT_SHFT;
break;
case XSCALE_COUNTER2:
ien &= ~XSCALE2_COUNT2_INT_EN;
evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT2_EVT_SHFT;
break;
case XSCALE_COUNTER3:
ien &= ~XSCALE2_COUNT3_INT_EN;
evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT3_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
spin_lock_irqsave(&pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
xscale2pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
int idx = xscale1pmu_get_event_idx(cpuc, event);
if (idx >= 0)
goto out;
if (!test_and_set_bit(XSCALE_COUNTER3, cpuc->used_mask))
idx = XSCALE_COUNTER3;
else if (!test_and_set_bit(XSCALE_COUNTER2, cpuc->used_mask))
idx = XSCALE_COUNTER2;
out:
return idx;
}
static void
xscale2pmu_start(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = xscale2pmu_read_pmnc() & ~XSCALE_PMU_CNT64;
val |= XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale2pmu_stop(void)
{
unsigned long flags, val;
spin_lock_irqsave(&pmu_lock, flags);
val = xscale2pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
spin_unlock_irqrestore(&pmu_lock, flags);
}
static inline u32
xscale2pmu_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER2:
asm volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER3:
asm volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (val));
break;
}
return val;
}
static inline void
xscale2pmu_write_counter(int counter, u32 val)
{
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER2:
asm volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER3:
asm volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (val));
break;
}
}
static const struct arm_pmu xscale2pmu = {
.id = ARM_PERF_PMU_ID_XSCALE2,
.name = "xscale2",
.handle_irq = xscale2pmu_handle_irq,
.enable = xscale2pmu_enable_event,
.disable = xscale2pmu_disable_event,
.read_counter = xscale2pmu_read_counter,
.write_counter = xscale2pmu_write_counter,
.get_event_idx = xscale2pmu_get_event_idx,
.start = xscale2pmu_start,
.stop = xscale2pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.num_events = 5,
.max_period = (1LLU << 32) - 1,
};
const struct arm_pmu *__init xscale2pmu_init(void)
{
return &xscale2pmu;
}
#else
const struct arm_pmu *__init xscale1pmu_init(void)
{
return NULL;
}
const struct arm_pmu *__init xscale2pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_XSCALE */

View File

@@ -0,0 +1,69 @@
/*
* sched_clock.c: support for extending counters to full 64-bit ns counter
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <asm/sched_clock.h>
static void sched_clock_poll(unsigned long wrap_ticks);
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
static void (*sched_clock_update_fn)(void);
static void sched_clock_poll(unsigned long wrap_ticks)
{
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
sched_clock_update_fn();
}
void __init init_sched_clock(struct clock_data *cd, void (*update)(void),
unsigned int clock_bits, unsigned long rate)
{
unsigned long r, w;
u64 res, wrap;
char r_unit;
sched_clock_update_fn = update;
/* calculate the mult/shift to convert counter ticks to ns. */
clocks_calc_mult_shift(&cd->mult, &cd->shift, rate, NSEC_PER_SEC, 60);
r = rate;
if (r >= 4000000) {
r /= 1000000;
r_unit = 'M';
} else {
r /= 1000;
r_unit = 'k';
}
/* calculate how many ns until we wrap */
wrap = cyc_to_ns((1ULL << clock_bits) - 1, cd->mult, cd->shift);
do_div(wrap, NSEC_PER_MSEC);
w = wrap;
/* calculate the ns resolution of this counter */
res = cyc_to_ns(1ULL, cd->mult, cd->shift);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
clock_bits, r, r_unit, res, w);
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
sched_clock_poll(sched_clock_timer.data);
/*
* Ensure that sched_clock() starts off at 0ns
*/
cd->epoch_ns = 0;
}

View File

@@ -16,6 +16,7 @@
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/profile.h> #include <linux/profile.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/ftrace.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/cpu.h> #include <linux/cpu.h>
@@ -456,7 +457,7 @@ static void ipi_timer(void)
} }
#ifdef CONFIG_LOCAL_TIMERS #ifdef CONFIG_LOCAL_TIMERS
asmlinkage void __exception do_local_timer(struct pt_regs *regs) asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
{ {
struct pt_regs *old_regs = set_irq_regs(regs); struct pt_regs *old_regs = set_irq_regs(regs);
int cpu = smp_processor_id(); int cpu = smp_processor_id();
@@ -543,7 +544,7 @@ static void ipi_cpu_stop(unsigned int cpu)
* *
* Bit 0 - Inter-processor function call * Bit 0 - Inter-processor function call
*/ */
asmlinkage void __exception do_IPI(struct pt_regs *regs) asmlinkage void __exception_irq_entry do_IPI(struct pt_regs *regs)
{ {
unsigned int cpu = smp_processor_id(); unsigned int cpu = smp_processor_id();
struct ipi_data *ipi = &per_cpu(ipi_data, cpu); struct ipi_data *ipi = &per_cpu(ipi_data, cpu);

View File

@@ -101,6 +101,7 @@ SECTIONS
__exception_text_start = .; __exception_text_start = .;
*(.exception.text) *(.exception.text)
__exception_text_end = .; __exception_text_end = .;
IRQENTRY_TEXT
TEXT_TEXT TEXT_TEXT
SCHED_TEXT SCHED_TEXT
LOCK_TEXT LOCK_TEXT

View File

@@ -101,7 +101,6 @@ static struct clocksource clk32k = {
.rating = 150, .rating = 150,
.read = read_clk32k, .read = read_clk32k,
.mask = CLOCKSOURCE_MASK(20), .mask = CLOCKSOURCE_MASK(20),
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -201,8 +200,7 @@ void __init at91rm9200_timer_init(void)
clockevents_register_device(&clkevt); clockevents_register_device(&clkevt);
/* register clocksource */ /* register clocksource */
clk32k.mult = clocksource_hz2mult(AT91_SLOW_CLOCK, clk32k.shift); clocksource_register_hz(&clk32k, AT91_SLOW_CLOCK);
clocksource_register(&clk32k);
} }
struct sys_timer at91rm9200_timer = { struct sys_timer at91rm9200_timer = {

View File

@@ -51,7 +51,6 @@ static struct clocksource pit_clk = {
.name = "pit", .name = "pit",
.rating = 175, .rating = 175,
.read = read_pit_clk, .read = read_pit_clk,
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -163,10 +162,9 @@ static void __init at91sam926x_pit_init(void)
* Register clocksource. The high order bits of PIV are unused, * Register clocksource. The high order bits of PIV are unused,
* so this isn't a 32-bit counter unless we get clockevent irqs. * so this isn't a 32-bit counter unless we get clockevent irqs.
*/ */
pit_clk.mult = clocksource_hz2mult(pit_rate, pit_clk.shift);
bits = 12 /* PICNT */ + ilog2(pit_cycle) /* PIV */; bits = 12 /* PICNT */ + ilog2(pit_cycle) /* PIV */;
pit_clk.mask = CLOCKSOURCE_MASK(bits); pit_clk.mask = CLOCKSOURCE_MASK(bits);
clocksource_register(&pit_clk); clocksource_register_hz(&pit_clk, pit_rate);
/* Set up irq handler */ /* Set up irq handler */
setup_irq(AT91_ID_SYS, &at91sam926x_pit_irq); setup_irq(AT91_ID_SYS, &at91sam926x_pit_irq);

View File

@@ -294,7 +294,6 @@ static struct clocksource clocksource_bcmring_timer1 = {
.rating = 200, .rating = 200,
.read = bcmring_get_cycles_timer1, .read = bcmring_get_cycles_timer1,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -303,7 +302,6 @@ static struct clocksource clocksource_bcmring_timer3 = {
.rating = 100, .rating = 100,
.read = bcmring_get_cycles_timer3, .read = bcmring_get_cycles_timer3,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -316,10 +314,8 @@ static int __init bcmring_clocksource_init(void)
writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
TIMER1_VA_BASE + TIMER_CTRL); TIMER1_VA_BASE + TIMER_CTRL);
clocksource_bcmring_timer1.mult = clocksource_register_khz(&clocksource_bcmring_timer1,
clocksource_khz2mult(TIMER1_FREQUENCY_MHZ * 1000, TIMER1_FREQUENCY_MHZ * 1000);
clocksource_bcmring_timer1.shift);
clocksource_register(&clocksource_bcmring_timer1);
/* setup timer3 as free-running clocksource */ /* setup timer3 as free-running clocksource */
writel(0, TIMER3_VA_BASE + TIMER_CTRL); writel(0, TIMER3_VA_BASE + TIMER_CTRL);
@@ -328,10 +324,8 @@ static int __init bcmring_clocksource_init(void)
writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
TIMER3_VA_BASE + TIMER_CTRL); TIMER3_VA_BASE + TIMER_CTRL);
clocksource_bcmring_timer3.mult = clocksource_register_khz(&clocksource_bcmring_timer3,
clocksource_khz2mult(TIMER3_FREQUENCY_KHZ, TIMER3_FREQUENCY_KHZ);
clocksource_bcmring_timer3.shift);
clocksource_register(&clocksource_bcmring_timer3);
return 0; return 0;
} }

View File

@@ -276,7 +276,6 @@ static struct clocksource clocksource_davinci = {
.rating = 300, .rating = 300,
.read = read_cycles, .read = read_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 24,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -378,10 +377,8 @@ static void __init davinci_timer_init(void)
/* setup clocksource */ /* setup clocksource */
clocksource_davinci.name = id_to_name[clocksource_id]; clocksource_davinci.name = id_to_name[clocksource_id];
clocksource_davinci.mult = if (clocksource_register_hz(&clocksource_davinci,
clocksource_khz2mult(davinci_clock_tick_rate/1000, davinci_clock_tick_rate))
clocksource_davinci.shift);
if (clocksource_register(&clocksource_davinci))
printk(err, clocksource_davinci.name); printk(err, clocksource_davinci.name);
/* setup clockevent */ /* setup clockevent */

View File

@@ -372,7 +372,6 @@ static struct clocksource clocksource_timersp = {
.rating = 200, .rating = 200,
.read = timersp_read, .read = timersp_read,
.mask = CLOCKSOURCE_MASK(16), .mask = CLOCKSOURCE_MASK(16),
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -390,8 +389,7 @@ static void integrator_clocksource_init(u32 khz)
writel(ctrl, base + TIMER_CTRL); writel(ctrl, base + TIMER_CTRL);
writel(0xffff, base + TIMER_LOAD); writel(0xffff, base + TIMER_LOAD);
cs->mult = clocksource_khz2mult(khz, cs->shift); clocksource_register_khz(cs, khz);
clocksource_register(cs);
} }
static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE; static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;

View File

@@ -35,6 +35,7 @@
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/page.h> #include <asm/page.h>
#include <asm/irq.h> #include <asm/irq.h>
#include <asm/sched_clock.h>
#include <asm/mach/map.h> #include <asm/mach/map.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
@@ -398,6 +399,23 @@ void __init ixp4xx_sys_init(void)
ixp4xx_exp_bus_size >> 20); ixp4xx_exp_bus_size >> 20);
} }
/*
* sched_clock()
*/
static DEFINE_CLOCK_DATA(cd);
unsigned long long notrace sched_clock(void)
{
u32 cyc = *IXP4XX_OSTS;
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
}
static void notrace ixp4xx_update_sched_clock(void)
{
u32 cyc = *IXP4XX_OSTS;
update_sched_clock(&cd, cyc, (u32)~0);
}
/* /*
* clocksource * clocksource
*/ */
@@ -411,7 +429,6 @@ static struct clocksource clocksource_ixp4xx = {
.rating = 200, .rating = 200,
.read = ixp4xx_get_cycles, .read = ixp4xx_get_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -419,21 +436,9 @@ unsigned long ixp4xx_timer_freq = FREQ;
EXPORT_SYMBOL(ixp4xx_timer_freq); EXPORT_SYMBOL(ixp4xx_timer_freq);
static void __init ixp4xx_clocksource_init(void) static void __init ixp4xx_clocksource_init(void)
{ {
clocksource_ixp4xx.mult = init_sched_clock(&cd, ixp4xx_update_sched_clock, 32, ixp4xx_timer_freq);
clocksource_hz2mult(ixp4xx_timer_freq,
clocksource_ixp4xx.shift);
clocksource_register(&clocksource_ixp4xx);
}
/* clocksource_register_hz(&clocksource_ixp4xx, ixp4xx_timer_freq);
* sched_clock()
*/
unsigned long long sched_clock(void)
{
cycle_t cyc = ixp4xx_get_cycles(NULL);
struct clocksource *cs = &clocksource_ixp4xx;
return clocksource_cyc2ns(cyc, cs->mult, cs->shift);
} }
/* /*

View File

@@ -38,7 +38,6 @@ static cycle_t lpc32xx_clksrc_read(struct clocksource *cs)
static struct clocksource lpc32xx_clksrc = { static struct clocksource lpc32xx_clksrc = {
.name = "lpc32xx_clksrc", .name = "lpc32xx_clksrc",
.shift = 24,
.rating = 300, .rating = 300,
.read = lpc32xx_clksrc_read, .read = lpc32xx_clksrc_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
@@ -171,9 +170,7 @@ static void __init lpc32xx_timer_init(void)
__raw_writel(0, LCP32XX_TIMER_MCR(LPC32XX_TIMER1_BASE)); __raw_writel(0, LCP32XX_TIMER_MCR(LPC32XX_TIMER1_BASE));
__raw_writel(LCP32XX_TIMER_CNTR_TCR_EN, __raw_writel(LCP32XX_TIMER_CNTR_TCR_EN,
LCP32XX_TIMER_TCR(LPC32XX_TIMER1_BASE)); LCP32XX_TIMER_TCR(LPC32XX_TIMER1_BASE));
lpc32xx_clksrc.mult = clocksource_hz2mult(clkrate, clocksource_register_hz(&lpc32xx_clksrc, clkrate);
lpc32xx_clksrc.shift);
clocksource_register(&lpc32xx_clksrc);
} }
struct sys_timer lpc32xx_timer = { struct sys_timer lpc32xx_timer = {

View File

@@ -26,8 +26,8 @@
#include <linux/io.h> #include <linux/io.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/cnt32_to_63.h>
#include <asm/sched_clock.h>
#include <mach/addr-map.h> #include <mach/addr-map.h>
#include <mach/regs-timers.h> #include <mach/regs-timers.h>
#include <mach/regs-apbc.h> #include <mach/regs-apbc.h>
@@ -42,23 +42,7 @@
#define MAX_DELTA (0xfffffffe) #define MAX_DELTA (0xfffffffe)
#define MIN_DELTA (16) #define MIN_DELTA (16)
#define TCR2NS_SCALE_FACTOR 10 static DEFINE_CLOCK_DATA(cd);
static unsigned long tcr2ns_scale;
static void __init set_tcr2ns_scale(unsigned long tcr_rate)
{
unsigned long long v = 1000000000ULL << TCR2NS_SCALE_FACTOR;
do_div(v, tcr_rate);
tcr2ns_scale = v;
/*
* We want an even value to automatically clear the top bit
* returned by cnt32_to_63() without an additional run time
* instruction. So if the LSB is 1 then round it up.
*/
if (tcr2ns_scale & 1)
tcr2ns_scale++;
}
/* /*
* FIXME: the timer needs some delay to stablize the counter capture * FIXME: the timer needs some delay to stablize the counter capture
@@ -75,10 +59,16 @@ static inline uint32_t timer_read(void)
return __raw_readl(TIMERS_VIRT_BASE + TMR_CVWR(0)); return __raw_readl(TIMERS_VIRT_BASE + TMR_CVWR(0));
} }
unsigned long long sched_clock(void) unsigned long long notrace sched_clock(void)
{ {
unsigned long long v = cnt32_to_63(timer_read()); u32 cyc = timer_read();
return (v * tcr2ns_scale) >> TCR2NS_SCALE_FACTOR; return cyc_to_sched_clock(&cd, cyc, (u32)~0);
}
static void notrace mmp_update_sched_clock(void)
{
u32 cyc = timer_read();
update_sched_clock(&cd, cyc, (u32)~0);
} }
static irqreturn_t timer_interrupt(int irq, void *dev_id) static irqreturn_t timer_interrupt(int irq, void *dev_id)
@@ -146,7 +136,6 @@ static cycle_t clksrc_read(struct clocksource *cs)
static struct clocksource cksrc = { static struct clocksource cksrc = {
.name = "clocksource", .name = "clocksource",
.shift = 20,
.rating = 200, .rating = 200,
.read = clksrc_read, .read = clksrc_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
@@ -186,17 +175,15 @@ void __init timer_init(int irq)
{ {
timer_config(); timer_config();
set_tcr2ns_scale(CLOCK_TICK_RATE); init_sched_clock(&cd, mmp_update_sched_clock, 32, CLOCK_TICK_RATE);
ckevt.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, ckevt.shift); ckevt.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, ckevt.shift);
ckevt.max_delta_ns = clockevent_delta2ns(MAX_DELTA, &ckevt); ckevt.max_delta_ns = clockevent_delta2ns(MAX_DELTA, &ckevt);
ckevt.min_delta_ns = clockevent_delta2ns(MIN_DELTA, &ckevt); ckevt.min_delta_ns = clockevent_delta2ns(MIN_DELTA, &ckevt);
ckevt.cpumask = cpumask_of(0); ckevt.cpumask = cpumask_of(0);
cksrc.mult = clocksource_hz2mult(CLOCK_TICK_RATE, cksrc.shift);
setup_irq(irq, &timer_irq); setup_irq(irq, &timer_irq);
clocksource_register(&cksrc); clocksource_register_hz(&cksrc, CLOCK_TICK_RATE);
clockevents_register_device(&ckevt); clockevents_register_device(&ckevt);
} }

View File

@@ -49,6 +49,8 @@ endchoice
config MSM_SOC_REV_A config MSM_SOC_REV_A
bool bool
config ARCH_MSM_SCORPIONMP
bool
config ARCH_MSM_ARM11 config ARCH_MSM_ARM11
bool bool

View File

@@ -137,7 +137,6 @@ static struct msm_clock msm_clocks[] = {
.rating = 200, .rating = 200,
.read = msm_gpt_read, .read = msm_gpt_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 17,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}, },
.irq = { .irq = {
@@ -164,7 +163,6 @@ static struct msm_clock msm_clocks[] = {
.rating = 300, .rating = 300,
.read = msm_dgt_read, .read = msm_dgt_read,
.mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)), .mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)),
.shift = 24 - MSM_DGT_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}, },
.irq = { .irq = {
@@ -205,8 +203,7 @@ static void __init msm_timer_init(void)
ce->min_delta_ns = clockevent_delta2ns(4, ce); ce->min_delta_ns = clockevent_delta2ns(4, ce);
ce->cpumask = cpumask_of(0); ce->cpumask = cpumask_of(0);
cs->mult = clocksource_hz2mult(clock->freq, cs->shift); res = clocksource_register_hz(cs, clock->freq);
res = clocksource_register(cs);
if (res) if (res)
printk(KERN_ERR "msm_timer_init: clocksource_register " printk(KERN_ERR "msm_timer_init: clocksource_register "
"failed for %s\n", cs->name); "failed for %s\n", cs->name);

View File

@@ -114,7 +114,6 @@ static struct clocksource clocksource_netx = {
.rating = 200, .rating = 200,
.read = netx_get_cycles, .read = netx_get_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -151,9 +150,7 @@ static void __init netx_timer_init(void)
writel(NETX_GPIO_COUNTER_CTRL_RUN, writel(NETX_GPIO_COUNTER_CTRL_RUN,
NETX_GPIO_COUNTER_CTRL(TIMER_CLOCKSOURCE)); NETX_GPIO_COUNTER_CTRL(TIMER_CLOCKSOURCE));
clocksource_netx.mult = clocksource_register_hz(&clocksource_netx, CLOCK_TICK_RATE);
clocksource_hz2mult(CLOCK_TICK_RATE, clocksource_netx.shift);
clocksource_register(&clocksource_netx);
netx_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, netx_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC,
netx_clockevent.shift); netx_clockevent.shift);

View File

@@ -35,7 +35,6 @@ static struct clocksource ns9360_clocksource = {
.rating = 300, .rating = 300,
.read = ns9360_clocksource_read, .read = ns9360_clocksource_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -148,10 +147,7 @@ static void __init ns9360_timer_init(void)
__raw_writel(tc, SYS_TC(TIMER_CLOCKSOURCE)); __raw_writel(tc, SYS_TC(TIMER_CLOCKSOURCE));
ns9360_clocksource.mult = clocksource_hz2mult(ns9360_cpuclock(), clocksource_register_hz(&ns9360_clocksource, ns9360_cpuclock());
ns9360_clocksource.shift);
clocksource_register(&ns9360_clocksource);
latch = SH_DIV(ns9360_cpuclock(), HZ, 0); latch = SH_DIV(ns9360_cpuclock(), HZ, 0);

View File

@@ -208,7 +208,6 @@ static struct clocksource clocksource_mpu = {
.rating = 300, .rating = 300,
.read = mpu_read, .read = mpu_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 24,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -217,13 +216,10 @@ static void __init omap_init_clocksource(unsigned long rate)
static char err[] __initdata = KERN_ERR static char err[] __initdata = KERN_ERR
"%s: can't register clocksource!\n"; "%s: can't register clocksource!\n";
clocksource_mpu.mult
= clocksource_khz2mult(rate/1000, clocksource_mpu.shift);
setup_irq(INT_TIMER2, &omap_mpu_timer2_irq); setup_irq(INT_TIMER2, &omap_mpu_timer2_irq);
omap_mpu_timer_start(1, ~0, 1); omap_mpu_timer_start(1, ~0, 1);
if (clocksource_register(&clocksource_mpu)) if (clocksource_register_hz(&clocksource_mpu, rate))
printk(err, clocksource_mpu.name); printk(err, clocksource_mpu.name);
} }

View File

@@ -195,7 +195,6 @@ static struct clocksource clocksource_gpt = {
.rating = 300, .rating = 300,
.read = clocksource_read_cycles, .read = clocksource_read_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 24,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -220,9 +219,7 @@ static void __init omap2_gp_clocksource_init(void)
omap_dm_timer_set_load_start(gpt, 1, 0); omap_dm_timer_set_load_start(gpt, 1, 0);
clocksource_gpt.mult = if (clocksource_register_hz(&clocksource_gpt, tick_rate))
clocksource_khz2mult(tick_rate/1000, clocksource_gpt.shift);
if (clocksource_register(&clocksource_gpt))
printk(err2, clocksource_gpt.name); printk(err2, clocksource_gpt.name);
} }
#endif #endif

View File

@@ -17,11 +17,11 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/cnt32_to_63.h>
#include <asm/div64.h> #include <asm/div64.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/sched_clock.h>
#include <mach/regs-ost.h> #include <mach/regs-ost.h>
/* /*
@@ -32,29 +32,18 @@
* long as there is always less than 582 seconds between successive * long as there is always less than 582 seconds between successive
* calls to sched_clock() which should always be the case in practice. * calls to sched_clock() which should always be the case in practice.
*/ */
static DEFINE_CLOCK_DATA(cd);
#define OSCR2NS_SCALE_FACTOR 10 unsigned long long notrace sched_clock(void)
static unsigned long oscr2ns_scale;
static void __init set_oscr2ns_scale(unsigned long oscr_rate)
{ {
unsigned long long v = 1000000000ULL << OSCR2NS_SCALE_FACTOR; u32 cyc = OSCR;
do_div(v, oscr_rate); return cyc_to_sched_clock(&cd, cyc, (u32)~0);
oscr2ns_scale = v;
/*
* We want an even value to automatically clear the top bit
* returned by cnt32_to_63() without an additional run time
* instruction. So if the LSB is 1 then round it up.
*/
if (oscr2ns_scale & 1)
oscr2ns_scale++;
} }
unsigned long long sched_clock(void) static void notrace pxa_update_sched_clock(void)
{ {
unsigned long long v = cnt32_to_63(OSCR); u32 cyc = OSCR;
return (v * oscr2ns_scale) >> OSCR2NS_SCALE_FACTOR; update_sched_clock(&cd, cyc, (u32)~0);
} }
@@ -127,7 +116,6 @@ static struct clocksource cksrc_pxa_oscr0 = {
.rating = 200, .rating = 200,
.read = pxa_read_oscr, .read = pxa_read_oscr,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -145,7 +133,7 @@ static void __init pxa_timer_init(void)
OIER = 0; OIER = 0;
OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3; OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;
set_oscr2ns_scale(clock_tick_rate); init_sched_clock(&cd, pxa_update_sched_clock, 32, clock_tick_rate);
ckevt_pxa_osmr0.mult = ckevt_pxa_osmr0.mult =
div_sc(clock_tick_rate, NSEC_PER_SEC, ckevt_pxa_osmr0.shift); div_sc(clock_tick_rate, NSEC_PER_SEC, ckevt_pxa_osmr0.shift);
@@ -155,12 +143,9 @@ static void __init pxa_timer_init(void)
clockevent_delta2ns(MIN_OSCR_DELTA * 2, &ckevt_pxa_osmr0) + 1; clockevent_delta2ns(MIN_OSCR_DELTA * 2, &ckevt_pxa_osmr0) + 1;
ckevt_pxa_osmr0.cpumask = cpumask_of(0); ckevt_pxa_osmr0.cpumask = cpumask_of(0);
cksrc_pxa_oscr0.mult =
clocksource_hz2mult(clock_tick_rate, cksrc_pxa_oscr0.shift);
setup_irq(IRQ_OST0, &pxa_ost0_irq); setup_irq(IRQ_OST0, &pxa_ost0_irq);
clocksource_register(&cksrc_pxa_oscr0); clocksource_register_hz(&cksrc_pxa_oscr0, clock_tick_rate);
clockevents_register_device(&ckevt_pxa_osmr0); clockevents_register_device(&ckevt_pxa_osmr0);
} }

View File

@@ -52,6 +52,8 @@
#include <mach/irqs.h> #include <mach/irqs.h>
#include <asm/hardware/timer-sp.h> #include <asm/hardware/timer-sp.h>
#include <plat/sched_clock.h>
#include "core.h" #include "core.h"
#ifdef CONFIG_ZONE_DMA #ifdef CONFIG_ZONE_DMA
@@ -654,6 +656,12 @@ void realview_leds_event(led_event_t ledevt)
} }
#endif /* CONFIG_LEDS */ #endif /* CONFIG_LEDS */
/*
* The sched_clock counter
*/
#define REFCOUNTER (__io_address(REALVIEW_SYS_BASE) + \
REALVIEW_SYS_24MHz_OFFSET)
/* /*
* Where is the timer (VA)? * Where is the timer (VA)?
*/ */
@@ -669,6 +677,8 @@ void __init realview_timer_init(unsigned int timer_irq)
{ {
u32 val; u32 val;
versatile_sched_clock_init(REFCOUNTER, 24000000);
/* /*
* set clock frequency: * set clock frequency:
* REALVIEW_REFCLK is 32KHz * REALVIEW_REFCLK is 32KHz

View File

@@ -211,7 +211,6 @@ struct clocksource pwm_clocksource = {
.rating = 250, .rating = 250,
.read = s5pv310_pwm4_read, .read = s5pv310_pwm4_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS , .flags = CLOCK_SOURCE_IS_CONTINUOUS ,
}; };
@@ -230,10 +229,7 @@ static void __init s5pv310_clocksource_init(void)
s5pv310_pwm_init(4, ~0); s5pv310_pwm_init(4, ~0);
s5pv310_pwm_start(4, 1); s5pv310_pwm_start(4, 1);
pwm_clocksource.mult = if (clocksource_register_hz(&pwm_clocksource, clock_rate))
clocksource_khz2mult(clock_rate/1000, pwm_clocksource.shift);
if (clocksource_register(&pwm_clocksource))
panic("%s: can't register clocksource\n", pwm_clocksource.name); panic("%s: can't register clocksource\n", pwm_clocksource.name);
} }

View File

@@ -16,9 +16,7 @@
#include <linux/pm.h> #include <linux/pm.h>
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/sched.h> /* just for sched_clock() - funny that */
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/cnt32_to_63.h>
#include <asm/div64.h> #include <asm/div64.h>
#include <mach/hardware.h> #include <mach/hardware.h>
@@ -109,27 +107,6 @@ unsigned int sa11x0_getspeed(unsigned int cpu)
return cclk_frequency_100khz[PPCR & 0xf] * 100; return cclk_frequency_100khz[PPCR & 0xf] * 100;
} }
/*
* This is the SA11x0 sched_clock implementation. This has
* a resolution of 271ns, and a maximum value of 32025597s (370 days).
*
* The return value is guaranteed to be monotonic in that range as
* long as there is always less than 582 seconds between successive
* calls to this function.
*
* ( * 1E9 / 3686400 => * 78125 / 288)
*/
unsigned long long sched_clock(void)
{
unsigned long long v = cnt32_to_63(OSCR);
/* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
v *= 78125<<1;
do_div(v, 288<<1);
return v;
}
/* /*
* Default power-off for SA1100 * Default power-off for SA1100
*/ */

View File

@@ -12,12 +12,39 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/sched.h> /* just for sched_clock() - funny that */
#include <linux/timex.h> #include <linux/timex.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/sched_clock.h>
#include <mach/hardware.h> #include <mach/hardware.h>
/*
* This is the SA11x0 sched_clock implementation.
*/
static DEFINE_CLOCK_DATA(cd);
/*
* Constants generated by clocks_calc_mult_shift(m, s, 3.6864MHz,
* NSEC_PER_SEC, 60).
* This gives a resolution of about 271ns and a wrap period of about 19min.
*/
#define SC_MULT 2275555556u
#define SC_SHIFT 23
unsigned long long notrace sched_clock(void)
{
u32 cyc = OSCR;
return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
}
static void notrace sa1100_update_sched_clock(void)
{
u32 cyc = OSCR;
update_sched_clock(&cd, cyc, (u32)~0);
}
#define MIN_OSCR_DELTA 2 #define MIN_OSCR_DELTA 2
static irqreturn_t sa1100_ost0_interrupt(int irq, void *dev_id) static irqreturn_t sa1100_ost0_interrupt(int irq, void *dev_id)
@@ -81,7 +108,6 @@ static struct clocksource cksrc_sa1100_oscr = {
.rating = 200, .rating = 200,
.read = sa1100_read_oscr, .read = sa1100_read_oscr,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -97,6 +123,9 @@ static void __init sa1100_timer_init(void)
OIER = 0; /* disable any timer interrupts */ OIER = 0; /* disable any timer interrupts */
OSSR = 0xf; /* clear status on all timers */ OSSR = 0xf; /* clear status on all timers */
init_fixed_sched_clock(&cd, sa1100_update_sched_clock, 32,
3686400, SC_MULT, SC_SHIFT);
ckevt_sa1100_osmr0.mult = ckevt_sa1100_osmr0.mult =
div_sc(3686400, NSEC_PER_SEC, ckevt_sa1100_osmr0.shift); div_sc(3686400, NSEC_PER_SEC, ckevt_sa1100_osmr0.shift);
ckevt_sa1100_osmr0.max_delta_ns = ckevt_sa1100_osmr0.max_delta_ns =
@@ -105,12 +134,9 @@ static void __init sa1100_timer_init(void)
clockevent_delta2ns(MIN_OSCR_DELTA * 2, &ckevt_sa1100_osmr0) + 1; clockevent_delta2ns(MIN_OSCR_DELTA * 2, &ckevt_sa1100_osmr0) + 1;
ckevt_sa1100_osmr0.cpumask = cpumask_of(0); ckevt_sa1100_osmr0.cpumask = cpumask_of(0);
cksrc_sa1100_oscr.mult =
clocksource_hz2mult(CLOCK_TICK_RATE, cksrc_sa1100_oscr.shift);
setup_irq(IRQ_OST0, &sa1100_timer_irq); setup_irq(IRQ_OST0, &sa1100_timer_irq);
clocksource_register(&cksrc_sa1100_oscr); clocksource_register_hz(&cksrc_sa1100_oscr, CLOCK_TICK_RATE);
clockevents_register_device(&ckevt_sa1100_osmr0); clockevents_register_device(&ckevt_sa1100_osmr0);
} }

View File

@@ -35,7 +35,6 @@ static struct clocksource clocksource_tcc = {
.rating = 200, .rating = 200,
.read = tcc_get_cycles, .read = tcc_get_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 28,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -103,9 +102,7 @@ static int __init tcc_clockevent_init(struct clk *clock)
{ {
unsigned int c = clk_get_rate(clock); unsigned int c = clk_get_rate(clock);
clocksource_tcc.mult = clocksource_hz2mult(c, clocksource_register_hz(&clocksource_tcc, c);
clocksource_tcc.shift);
clocksource_register(&clocksource_tcc);
clockevent_tcc.mult = div_sc(c, NSEC_PER_SEC, clockevent_tcc.mult = div_sc(c, NSEC_PER_SEC,
clockevent_tcc.shift); clockevent_tcc.shift);

View File

@@ -18,6 +18,7 @@
*/ */
#include <linux/init.h> #include <linux/init.h>
#include <linux/sched.h>
#include <linux/time.h> #include <linux/time.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/irq.h> #include <linux/irq.h>
@@ -25,10 +26,10 @@
#include <linux/clocksource.h> #include <linux/clocksource.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/cnt32_to_63.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/localtimer.h> #include <asm/localtimer.h>
#include <asm/sched_clock.h>
#include <mach/iomap.h> #include <mach/iomap.h>
#include <mach/irqs.h> #include <mach/irqs.h>
@@ -91,7 +92,7 @@ static void tegra_timer_set_mode(enum clock_event_mode mode,
static cycle_t tegra_clocksource_read(struct clocksource *cs) static cycle_t tegra_clocksource_read(struct clocksource *cs)
{ {
return cnt32_to_63(timer_readl(TIMERUS_CNTR_1US)); return timer_readl(TIMERUS_CNTR_1US);
} }
static struct clock_event_device tegra_clockevent = { static struct clock_event_device tegra_clockevent = {
@@ -106,14 +107,29 @@ static struct clocksource tegra_clocksource = {
.name = "timer_us", .name = "timer_us",
.rating = 300, .rating = 300,
.read = tegra_clocksource_read, .read = tegra_clocksource_read,
.mask = 0x7FFFFFFFFFFFFFFFULL, .mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
unsigned long long sched_clock(void) static DEFINE_CLOCK_DATA(cd);
/*
* Constants generated by clocks_calc_mult_shift(m, s, 1MHz, NSEC_PER_SEC, 60).
* This gives a resolution of about 1us and a wrap period of about 1h11min.
*/
#define SC_MULT 4194304000u
#define SC_SHIFT 22
unsigned long long notrace sched_clock(void)
{ {
return clocksource_cyc2ns(tegra_clocksource.read(&tegra_clocksource), u32 cyc = timer_readl(TIMERUS_CNTR_1US);
tegra_clocksource.mult, tegra_clocksource.shift); return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
}
static void notrace tegra_update_sched_clock(void)
{
u32 cyc = timer_readl(TIMERUS_CNTR_1US);
update_sched_clock(&cd, cyc, (u32)~0);
} }
static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id) static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id)
@@ -158,6 +174,9 @@ static void __init tegra_init_timer(void)
WARN(1, "Unknown clock rate"); WARN(1, "Unknown clock rate");
} }
init_fixed_sched_clock(&cd, tegra_update_sched_clock, 32,
1000000, SC_MULT, SC_SHIFT);
if (clocksource_register_hz(&tegra_clocksource, 1000000)) { if (clocksource_register_hz(&tegra_clocksource, 1000000)) {
printk(KERN_ERR "Failed to register clocksource\n"); printk(KERN_ERR "Failed to register clocksource\n");
BUG(); BUG();

View File

@@ -9,6 +9,7 @@
* Author: Linus Walleij <linus.walleij@stericsson.com> * Author: Linus Walleij <linus.walleij@stericsson.com>
*/ */
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/time.h> #include <linux/time.h>
#include <linux/timex.h> #include <linux/timex.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
@@ -21,6 +22,7 @@
#include <mach/hardware.h> #include <mach/hardware.h>
/* Generic stuff */ /* Generic stuff */
#include <asm/sched_clock.h>
#include <asm/mach/map.h> #include <asm/mach/map.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
@@ -352,12 +354,18 @@ static struct clocksource clocksource_u300_1mhz = {
* this wraps around for now, since it is just a relative time * this wraps around for now, since it is just a relative time
* stamp. (Inspired by OMAP implementation.) * stamp. (Inspired by OMAP implementation.)
*/ */
static DEFINE_CLOCK_DATA(cd);
unsigned long long notrace sched_clock(void) unsigned long long notrace sched_clock(void)
{ {
return clocksource_cyc2ns(clocksource_u300_1mhz.read( u32 cyc = readl(U300_TIMER_APP_VBASE + U300_TIMER_APP_GPT2CC);
&clocksource_u300_1mhz), return cyc_to_sched_clock(&cd, cyc, (u32)~0);
clocksource_u300_1mhz.mult, }
clocksource_u300_1mhz.shift);
static void notrace u300_update_sched_clock(void)
{
u32 cyc = readl(U300_TIMER_APP_VBASE + U300_TIMER_APP_GPT2CC);
update_sched_clock(&cd, cyc, (u32)~0);
} }
@@ -375,6 +383,8 @@ static void __init u300_timer_init(void)
clk_enable(clk); clk_enable(clk);
rate = clk_get_rate(clk); rate = clk_get_rate(clk);
init_sched_clock(&cd, u300_update_sched_clock, 32, rate);
/* /*
* Disable the "OS" and "DD" timers - these are designed for Symbian! * Disable the "OS" and "DD" timers - these are designed for Symbian!
* Example usage in cnh1601578 cpu subsystem pd_timer_app.c * Example usage in cnh1601578 cpu subsystem pd_timer_app.c
@@ -412,9 +422,7 @@ static void __init u300_timer_init(void)
writel(U300_TIMER_APP_EGPT2_TIMER_ENABLE, writel(U300_TIMER_APP_EGPT2_TIMER_ENABLE,
U300_TIMER_APP_VBASE + U300_TIMER_APP_EGPT2); U300_TIMER_APP_VBASE + U300_TIMER_APP_EGPT2);
clocksource_calc_mult_shift(&clocksource_u300_1mhz, if (clocksource_register_hz(&clocksource_u300_1mhz, rate))
rate, APPTIMER_MIN_RANGE);
if (clocksource_register(&clocksource_u300_1mhz))
printk(KERN_ERR "timer: failed to initialize clock " printk(KERN_ERR "timer: failed to initialize clock "
"source %s\n", clocksource_u300_1mhz.name); "source %s\n", clocksource_u300_1mhz.name);

View File

@@ -51,6 +51,8 @@
#include <mach/platform.h> #include <mach/platform.h>
#include <asm/hardware/timer-sp.h> #include <asm/hardware/timer-sp.h>
#include <plat/sched_clock.h>
#include "core.h" #include "core.h"
/* /*
@@ -885,6 +887,12 @@ void __init versatile_init(void)
#endif #endif
} }
/*
* The sched_clock counter
*/
#define REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + \
VERSATILE_SYS_24MHz_OFFSET)
/* /*
* Where is the timer (VA)? * Where is the timer (VA)?
*/ */
@@ -900,6 +908,8 @@ static void __init versatile_timer_init(void)
{ {
u32 val; u32 val;
versatile_sched_clock_init(REFCOUNTER, 24000000);
/* /*
* set clock frequency: * set clock frequency:
* VERSATILE_REFCLK is 32KHz * VERSATILE_REFCLK is 32KHz

View File

@@ -18,11 +18,12 @@
#include <asm/mach/map.h> #include <asm/mach/map.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/hardware/arm_timer.h> #include <asm/hardware/arm_timer.h>
#include <asm/hardware/timer-sp.h>
#include <mach/clkdev.h> #include <mach/clkdev.h>
#include <mach/motherboard.h> #include <mach/motherboard.h>
#include <asm/hardware/timer-sp.h> #include <plat/sched_clock.h>
#include "core.h" #include "core.h"
@@ -50,6 +51,8 @@ void __init v2m_map_io(struct map_desc *tile, size_t num)
static void __init v2m_timer_init(void) static void __init v2m_timer_init(void)
{ {
versatile_sched_clock_init(MMIO_P2V(V2M_SYS_24MHZ), 24000000);
writel(0, MMIO_P2V(V2M_TIMER0) + TIMER_CTRL); writel(0, MMIO_P2V(V2M_TIMER0) + TIMER_CTRL);
writel(0, MMIO_P2V(V2M_TIMER1) + TIMER_CTRL); writel(0, MMIO_P2V(V2M_TIMER1) + TIMER_CTRL);

View File

@@ -153,7 +153,6 @@ static struct clocksource clocksource_nuc900 = {
.rating = 200, .rating = 200,
.read = nuc900_get_cycles, .read = nuc900_get_cycles,
.mask = CLOCKSOURCE_MASK(TDR_SHIFT), .mask = CLOCKSOURCE_MASK(TDR_SHIFT),
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -176,9 +175,7 @@ static void __init nuc900_clocksource_init(void)
val |= (COUNTEN | PERIOD | PRESCALE); val |= (COUNTEN | PERIOD | PRESCALE);
__raw_writel(val, REG_TCSR1); __raw_writel(val, REG_TCSR1);
clocksource_nuc900.mult = clocksource_register_hz(&clocksource_nuc900, rate);
clocksource_khz2mult((rate / 1000), clocksource_nuc900.shift);
clocksource_register(&clocksource_nuc900);
} }
static void __init nuc900_timer_init(void) static void __init nuc900_timer_init(void)

View File

@@ -17,6 +17,7 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/time.h> #include <linux/time.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/sched.h>
#include <linux/timex.h> #include <linux/timex.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/io.h> #include <linux/io.h>
@@ -24,6 +25,7 @@
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <mach/hardware.h> #include <mach/hardware.h>
#include <asm/irq.h> #include <asm/irq.h>
#include <asm/sched_clock.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
@@ -50,15 +52,21 @@ static struct clocksource iop_clocksource = {
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
static DEFINE_CLOCK_DATA(cd);
/* /*
* IOP sched_clock() implementation via its clocksource. * IOP sched_clock() implementation via its clocksource.
*/ */
unsigned long long sched_clock(void) unsigned long long notrace sched_clock(void)
{ {
cycle_t cyc = iop_clocksource_read(NULL); u32 cyc = 0xffffffffu - read_tcr1();
struct clocksource *cs = &iop_clocksource; return cyc_to_sched_clock(&cd, cyc, (u32)~0);
}
return clocksource_cyc2ns(cyc, cs->mult, cs->shift); static void notrace iop_update_sched_clock(void)
{
u32 cyc = 0xffffffffu - read_tcr1();
update_sched_clock(&cd, cyc, (u32)~0);
} }
/* /*
@@ -88,6 +96,7 @@ static void iop_set_mode(enum clock_event_mode mode,
case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_PERIODIC:
write_tmr0(tmr & ~IOP_TMR_EN); write_tmr0(tmr & ~IOP_TMR_EN);
write_tcr0(ticks_per_jiffy - 1); write_tcr0(ticks_per_jiffy - 1);
write_trr0(ticks_per_jiffy - 1);
tmr |= (IOP_TMR_RELOAD | IOP_TMR_EN); tmr |= (IOP_TMR_RELOAD | IOP_TMR_EN);
break; break;
case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_ONESHOT:
@@ -143,6 +152,8 @@ void __init iop_init_time(unsigned long tick_rate)
{ {
u32 timer_ctl; u32 timer_ctl;
init_sched_clock(&cd, iop_update_sched_clock, 32, tick_rate);
ticks_per_jiffy = DIV_ROUND_CLOSEST(tick_rate, HZ); ticks_per_jiffy = DIV_ROUND_CLOSEST(tick_rate, HZ);
iop_tick_rate = tick_rate; iop_tick_rate = tick_rate;
@@ -153,6 +164,7 @@ void __init iop_init_time(unsigned long tick_rate)
* Set up interrupting clockevent timer 0. * Set up interrupting clockevent timer 0.
*/ */
write_tmr0(timer_ctl & ~IOP_TMR_EN); write_tmr0(timer_ctl & ~IOP_TMR_EN);
write_tisr(1);
setup_irq(IRQ_IOP_TIMER0, &iop_timer_irq); setup_irq(IRQ_IOP_TIMER0, &iop_timer_irq);
clockevents_calc_mult_shift(&iop_clockevent, clockevents_calc_mult_shift(&iop_clockevent,
tick_rate, IOP_MIN_RANGE); tick_rate, IOP_MIN_RANGE);
@@ -162,9 +174,6 @@ void __init iop_init_time(unsigned long tick_rate)
clockevent_delta2ns(0xf, &iop_clockevent); clockevent_delta2ns(0xf, &iop_clockevent);
iop_clockevent.cpumask = cpumask_of(0); iop_clockevent.cpumask = cpumask_of(0);
clockevents_register_device(&iop_clockevent); clockevents_register_device(&iop_clockevent);
write_trr0(ticks_per_jiffy - 1);
write_tcr0(ticks_per_jiffy - 1);
write_tmr0(timer_ctl);
/* /*
* Set up free-running clocksource timer 1. * Set up free-running clocksource timer 1.
@@ -172,7 +181,5 @@ void __init iop_init_time(unsigned long tick_rate)
write_trr1(0xffffffff); write_trr1(0xffffffff);
write_tcr1(0xffffffff); write_tcr1(0xffffffff);
write_tmr1(timer_ctl); write_tmr1(timer_ctl);
clocksource_calc_mult_shift(&iop_clocksource, tick_rate, clocksource_register_hz(&iop_clocksource, tick_rate);
IOP_MIN_RANGE);
clocksource_register(&iop_clocksource);
} }

View File

@@ -93,7 +93,6 @@ static struct clocksource clocksource_epit = {
.rating = 200, .rating = 200,
.read = epit_read, .read = epit_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -101,9 +100,7 @@ static int __init epit_clocksource_init(struct clk *timer_clk)
{ {
unsigned int c = clk_get_rate(timer_clk); unsigned int c = clk_get_rate(timer_clk);
clocksource_epit.mult = clocksource_hz2mult(c, clocksource_register_hz(&clocksource_epit, c);
clocksource_epit.shift);
clocksource_register(&clocksource_epit);
return 0; return 0;
} }

View File

@@ -120,7 +120,6 @@ static struct clocksource clocksource_mxc = {
.rating = 200, .rating = 200,
.read = mx1_2_get_cycles, .read = mx1_2_get_cycles,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -131,9 +130,7 @@ static int __init mxc_clocksource_init(struct clk *timer_clk)
if (timer_is_v2()) if (timer_is_v2())
clocksource_mxc.read = v2_get_cycles; clocksource_mxc.read = v2_get_cycles;
clocksource_mxc.mult = clocksource_hz2mult(c, clocksource_register_hz(&clocksource_mxc, c);
clocksource_mxc.shift);
clocksource_register(&clocksource_mxc);
return 0; return 0;
} }

View File

@@ -14,6 +14,7 @@ if PLAT_NOMADIK
config HAS_MTU config HAS_MTU
bool bool
select HAVE_SCHED_CLOCK
help help
Support for Multi Timer Unit. MTU provides access Support for Multi Timer Unit. MTU provides access
to multiple interrupt generating programmable to multiple interrupt generating programmable

View File

@@ -17,9 +17,9 @@
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/jiffies.h> #include <linux/jiffies.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/cnt32_to_63.h> #include <linux/sched.h>
#include <linux/timer.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <asm/sched_clock.h>
#include <plat/mtu.h> #include <plat/mtu.h>
@@ -52,81 +52,24 @@ static struct clocksource nmdk_clksrc = {
* Override the global weak sched_clock symbol with this * Override the global weak sched_clock symbol with this
* local implementation which uses the clocksource to get some * local implementation which uses the clocksource to get some
* better resolution when scheduling the kernel. * better resolution when scheduling the kernel.
*
* Because the hardware timer period may be quite short
* (32.3 secs on the 133 MHz MTU timer selection on ux500)
* and because cnt32_to_63() needs to be called at least once per
* half period to work properly, a kernel keepwarm() timer is set up
* to ensure this requirement is always met.
*
* Also the sched_clock timer will wrap around at some point,
* here we set it to run continously for a year.
*/ */
#define SCHED_CLOCK_MIN_WRAP 3600*24*365 static DEFINE_CLOCK_DATA(cd);
static struct timer_list cnt32_to_63_keepwarm_timer;
static u32 sched_mult;
static u32 sched_shift;
unsigned long long notrace sched_clock(void) unsigned long long notrace sched_clock(void)
{ {
u64 cycles; u32 cyc;
if (unlikely(!mtu_base)) if (unlikely(!mtu_base))
return 0; return 0;
cycles = cnt32_to_63(-readl(mtu_base + MTU_VAL(0))); cyc = -readl(mtu_base + MTU_VAL(0));
/* return cyc_to_sched_clock(&cd, cyc, (u32)~0);
* sched_mult is guaranteed to be even so will
* shift out bit 63
*/
return (cycles * sched_mult) >> sched_shift;
} }
/* Just kick sched_clock every so often */ static void notrace nomadik_update_sched_clock(void)
static void cnt32_to_63_keepwarm(unsigned long data)
{ {
mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + data)); u32 cyc = -readl(mtu_base + MTU_VAL(0));
(void) sched_clock(); update_sched_clock(&cd, cyc, (u32)~0);
}
/*
* Set up a timer to keep sched_clock():s 32_to_63 algorithm warm
* once in half a 32bit timer wrap interval.
*/
static void __init nmdk_sched_clock_init(unsigned long rate)
{
u32 v;
unsigned long delta;
u64 days;
/* Find the apropriate mult and shift factors */
clocks_calc_mult_shift(&sched_mult, &sched_shift,
rate, NSEC_PER_SEC, SCHED_CLOCK_MIN_WRAP);
/* We need to multiply by an even number to get rid of bit 63 */
if (sched_mult & 1)
sched_mult++;
/* Let's see what we get, take max counter and scale it */
days = (0xFFFFFFFFFFFFFFFFLLU * sched_mult) >> sched_shift;
do_div(days, NSEC_PER_SEC);
do_div(days, (3600*24));
pr_info("sched_clock: using %d bits @ %lu Hz wrap in %lu days\n",
(64 - sched_shift), rate, (unsigned long) days);
/*
* Program a timer to kick us at half 32bit wraparound
* Formula: seconds per wrap = (2^32) / f
*/
v = 0xFFFFFFFFUL / rate;
/* We want half of the wrap time to keep cnt32_to_63 warm */
v /= 2;
pr_debug("sched_clock: prescaled timer rate: %lu Hz, "
"initialize keepwarm timer every %d seconds\n", rate, v);
/* Convert seconds to jiffies */
delta = msecs_to_jiffies(v*1000);
setup_timer(&cnt32_to_63_keepwarm_timer, cnt32_to_63_keepwarm, delta);
mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + delta));
} }
/* Clockevent device: use one-shot mode */ /* Clockevent device: use one-shot mode */
@@ -222,7 +165,6 @@ void __init nmdk_timer_init(void)
} else { } else {
cr |= MTU_CRn_PRESCALE_1; cr |= MTU_CRn_PRESCALE_1;
} }
clocksource_calc_mult_shift(&nmdk_clksrc, rate, MTU_MIN_RANGE);
/* Timer 0 is the free running clocksource */ /* Timer 0 is the free running clocksource */
writel(cr, mtu_base + MTU_CR(0)); writel(cr, mtu_base + MTU_CR(0));
@@ -233,11 +175,11 @@ void __init nmdk_timer_init(void)
/* Now the clock source is ready */ /* Now the clock source is ready */
nmdk_clksrc.read = nmdk_read_timer; nmdk_clksrc.read = nmdk_read_timer;
if (clocksource_register(&nmdk_clksrc)) if (clocksource_register_hz(&nmdk_clksrc, rate))
pr_err("timer: failed to initialize clock source %s\n", pr_err("timer: failed to initialize clock source %s\n",
nmdk_clksrc.name); nmdk_clksrc.name);
nmdk_sched_clock_init(rate); init_sched_clock(&cd, nomadik_update_sched_clock, 32, rate);
/* Timer 1 is used for events */ /* Timer 1 is used for events */

View File

@@ -15,8 +15,11 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/io.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <asm/sched_clock.h>
#include <plat/common.h> #include <plat/common.h>
#include <plat/board.h> #include <plat/board.h>
@@ -45,7 +48,7 @@
static u32 offset_32k __read_mostly; static u32 offset_32k __read_mostly;
#ifdef CONFIG_ARCH_OMAP16XX #ifdef CONFIG_ARCH_OMAP16XX
static cycle_t omap16xx_32k_read(struct clocksource *cs) static cycle_t notrace omap16xx_32k_read(struct clocksource *cs)
{ {
return omap_readl(OMAP16XX_TIMER_32K_SYNCHRONIZED) - offset_32k; return omap_readl(OMAP16XX_TIMER_32K_SYNCHRONIZED) - offset_32k;
} }
@@ -54,7 +57,7 @@ static cycle_t omap16xx_32k_read(struct clocksource *cs)
#endif #endif
#ifdef CONFIG_ARCH_OMAP2420 #ifdef CONFIG_ARCH_OMAP2420
static cycle_t omap2420_32k_read(struct clocksource *cs) static cycle_t notrace omap2420_32k_read(struct clocksource *cs)
{ {
return omap_readl(OMAP2420_32KSYNCT_BASE + 0x10) - offset_32k; return omap_readl(OMAP2420_32KSYNCT_BASE + 0x10) - offset_32k;
} }
@@ -63,7 +66,7 @@ static cycle_t omap2420_32k_read(struct clocksource *cs)
#endif #endif
#ifdef CONFIG_ARCH_OMAP2430 #ifdef CONFIG_ARCH_OMAP2430
static cycle_t omap2430_32k_read(struct clocksource *cs) static cycle_t notrace omap2430_32k_read(struct clocksource *cs)
{ {
return omap_readl(OMAP2430_32KSYNCT_BASE + 0x10) - offset_32k; return omap_readl(OMAP2430_32KSYNCT_BASE + 0x10) - offset_32k;
} }
@@ -72,7 +75,7 @@ static cycle_t omap2430_32k_read(struct clocksource *cs)
#endif #endif
#ifdef CONFIG_ARCH_OMAP3 #ifdef CONFIG_ARCH_OMAP3
static cycle_t omap34xx_32k_read(struct clocksource *cs) static cycle_t notrace omap34xx_32k_read(struct clocksource *cs)
{ {
return omap_readl(OMAP3430_32KSYNCT_BASE + 0x10) - offset_32k; return omap_readl(OMAP3430_32KSYNCT_BASE + 0x10) - offset_32k;
} }
@@ -81,7 +84,7 @@ static cycle_t omap34xx_32k_read(struct clocksource *cs)
#endif #endif
#ifdef CONFIG_ARCH_OMAP4 #ifdef CONFIG_ARCH_OMAP4
static cycle_t omap44xx_32k_read(struct clocksource *cs) static cycle_t notrace omap44xx_32k_read(struct clocksource *cs)
{ {
return omap_readl(OMAP4430_32KSYNCT_BASE + 0x10) - offset_32k; return omap_readl(OMAP4430_32KSYNCT_BASE + 0x10) - offset_32k;
} }
@@ -93,7 +96,7 @@ static cycle_t omap44xx_32k_read(struct clocksource *cs)
* Kernel assumes that sched_clock can be called early but may not have * Kernel assumes that sched_clock can be called early but may not have
* things ready yet. * things ready yet.
*/ */
static cycle_t omap_32k_read_dummy(struct clocksource *cs) static cycle_t notrace omap_32k_read_dummy(struct clocksource *cs)
{ {
return 0; return 0;
} }
@@ -103,7 +106,6 @@ static struct clocksource clocksource_32k = {
.rating = 250, .rating = 250,
.read = omap_32k_read_dummy, .read = omap_32k_read_dummy,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -111,10 +113,25 @@ static struct clocksource clocksource_32k = {
* Returns current time from boot in nsecs. It's OK for this to wrap * Returns current time from boot in nsecs. It's OK for this to wrap
* around for now, as it's just a relative time stamp. * around for now, as it's just a relative time stamp.
*/ */
unsigned long long sched_clock(void) static DEFINE_CLOCK_DATA(cd);
/*
* Constants generated by clocks_calc_mult_shift(m, s, 32768, NSEC_PER_SEC, 60).
* This gives a resolution of about 30us and a wrap period of about 36hrs.
*/
#define SC_MULT 4000000000u
#define SC_SHIFT 17
unsigned long long notrace sched_clock(void)
{ {
return clocksource_cyc2ns(clocksource_32k.read(&clocksource_32k), u32 cyc = clocksource_32k.read(&clocksource_32k);
clocksource_32k.mult, clocksource_32k.shift); return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
}
static void notrace omap_update_sched_clock(void)
{
u32 cyc = clocksource_32k.read(&clocksource_32k);
update_sched_clock(&cd, cyc, (u32)~0);
} }
/** /**
@@ -168,13 +185,13 @@ static int __init omap_init_clocksource_32k(void)
if (!IS_ERR(sync_32k_ick)) if (!IS_ERR(sync_32k_ick))
clk_enable(sync_32k_ick); clk_enable(sync_32k_ick);
clocksource_32k.mult = clocksource_hz2mult(32768,
clocksource_32k.shift);
offset_32k = clocksource_32k.read(&clocksource_32k); offset_32k = clocksource_32k.read(&clocksource_32k);
if (clocksource_register(&clocksource_32k)) if (clocksource_register_hz(&clocksource_32k, 32768))
printk(err, clocksource_32k.name); printk(err, clocksource_32k.name);
init_fixed_sched_clock(&cd, omap_update_sched_clock, 32,
32768, SC_MULT, SC_SHIFT);
} }
return 0; return 0;
} }

View File

@@ -13,11 +13,11 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/cnt32_to_63.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <asm/sched_clock.h>
#include <asm/mach/time.h> #include <asm/mach/time.h>
#include <mach/bridge-regs.h> #include <mach/bridge-regs.h>
#include <mach/hardware.h> #include <mach/hardware.h>
@@ -44,52 +44,26 @@ static u32 ticks_per_jiffy;
/* /*
* Orion's sched_clock implementation. It has a resolution of * Orion's sched_clock implementation. It has a resolution of
* at least 7.5ns (133MHz TCLK) and a maximum value of 834 days. * at least 7.5ns (133MHz TCLK).
*
* Because the hardware timer period is quite short (21 secs if
* 200MHz TCLK) and because cnt32_to_63() needs to be called at
* least once per half period to work properly, a kernel timer is
* set up to ensure this requirement is always met.
*/ */
#define TCLK2NS_SCALE_FACTOR 8 static DEFINE_CLOCK_DATA(cd);
static unsigned long tclk2ns_scale; unsigned long long notrace sched_clock(void)
unsigned long long sched_clock(void)
{ {
unsigned long long v = cnt32_to_63(0xffffffff - readl(TIMER0_VAL)); u32 cyc = 0xffffffff - readl(TIMER0_VAL);
return (v * tclk2ns_scale) >> TCLK2NS_SCALE_FACTOR; return cyc_to_sched_clock(&cd, cyc, (u32)~0);
} }
static struct timer_list cnt32_to_63_keepwarm_timer;
static void cnt32_to_63_keepwarm(unsigned long data) static void notrace orion_update_sched_clock(void)
{ {
mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + data)); u32 cyc = 0xffffffff - readl(TIMER0_VAL);
(void) sched_clock(); update_sched_clock(&cd, cyc, (u32)~0);
} }
static void __init setup_sched_clock(unsigned long tclk) static void __init setup_sched_clock(unsigned long tclk)
{ {
unsigned long long v; init_sched_clock(&cd, orion_update_sched_clock, 32, tclk);
unsigned long data;
v = NSEC_PER_SEC;
v <<= TCLK2NS_SCALE_FACTOR;
v += tclk/2;
do_div(v, tclk);
/*
* We want an even value to automatically clear the top bit
* returned by cnt32_to_63() without an additional run time
* instruction. So if the LSB is 1 then round it up.
*/
if (v & 1)
v++;
tclk2ns_scale = v;
data = (0xffffffffUL / tclk / 2 - 2) * HZ;
setup_timer(&cnt32_to_63_keepwarm_timer, cnt32_to_63_keepwarm, data);
mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + data));
} }
/* /*
@@ -102,7 +76,6 @@ static cycle_t orion_clksrc_read(struct clocksource *cs)
static struct clocksource orion_clksrc = { static struct clocksource orion_clksrc = {
.name = "orion_clocksource", .name = "orion_clocksource",
.shift = 20,
.rating = 300, .rating = 300,
.read = orion_clksrc_read, .read = orion_clksrc_read,
.mask = CLOCKSOURCE_MASK(32), .mask = CLOCKSOURCE_MASK(32),
@@ -245,8 +218,7 @@ void __init orion_time_init(unsigned int irq, unsigned int tclk)
writel(u & ~BRIDGE_INT_TIMER0, BRIDGE_MASK); writel(u & ~BRIDGE_INT_TIMER0, BRIDGE_MASK);
u = readl(TIMER_CTRL); u = readl(TIMER_CTRL);
writel(u | TIMER0_EN | TIMER0_RELOAD_EN, TIMER_CTRL); writel(u | TIMER0_EN | TIMER0_RELOAD_EN, TIMER_CTRL);
orion_clksrc.mult = clocksource_hz2mult(tclk, orion_clksrc.shift); clocksource_register_hz(&orion_clksrc, tclk);
clocksource_register(&orion_clksrc);
/* /*
* Setup clockevent timer (interrupt-driven.) * Setup clockevent timer (interrupt-driven.)

View File

@@ -81,8 +81,6 @@ static struct clocksource clksrc = {
.rating = 200, /* its a pretty decent clock */ .rating = 200, /* its a pretty decent clock */
.read = clocksource_read_cycles, .read = clocksource_read_cycles,
.mask = 0xFFFF, /* 16 bits */ .mask = 0xFFFF, /* 16 bits */
.mult = 0, /* to be computed */
.shift = 0, /* to be computed */
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -105,10 +103,8 @@ static void spear_clocksource_init(void)
val |= CTRL_ENABLE ; val |= CTRL_ENABLE ;
writew(val, gpt_base + CR(CLKSRC)); writew(val, gpt_base + CR(CLKSRC));
clocksource_calc_mult_shift(&clksrc, tick_rate, SPEAR_MIN_RANGE);
/* register the clocksource */ /* register the clocksource */
clocksource_register(&clksrc); clocksource_register_hz(&clksrc, tick_rate);
} }
static struct clock_event_device clkevt = { static struct clock_event_device clkevt = {

View File

@@ -89,7 +89,6 @@ static struct clocksource cksrc_stmp3xxx = {
.rating = 250, .rating = 250,
.read = stmp3xxx_clock_read, .read = stmp3xxx_clock_read,
.mask = CLOCKSOURCE_MASK(16), .mask = CLOCKSOURCE_MASK(16),
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS, .flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
@@ -106,8 +105,6 @@ static struct irqaction stmp3xxx_timer_irq = {
*/ */
static void __init stmp3xxx_init_timer(void) static void __init stmp3xxx_init_timer(void)
{ {
cksrc_stmp3xxx.mult = clocksource_hz2mult(CLOCK_TICK_RATE,
cksrc_stmp3xxx.shift);
ckevt_timrot.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, ckevt_timrot.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC,
ckevt_timrot.shift); ckevt_timrot.shift);
ckevt_timrot.min_delta_ns = clockevent_delta2ns(2, &ckevt_timrot); ckevt_timrot.min_delta_ns = clockevent_delta2ns(2, &ckevt_timrot);
@@ -140,7 +137,7 @@ static void __init stmp3xxx_init_timer(void)
setup_irq(IRQ_TIMER0, &stmp3xxx_timer_irq); setup_irq(IRQ_TIMER0, &stmp3xxx_timer_irq);
clocksource_register(&cksrc_stmp3xxx); clocksource_register_hz(&cksrc_stmp3xxx, CLOCK_TICK_RATE);
clockevents_register_device(&ckevt_timrot); clockevents_register_device(&ckevt_timrot);
} }

View File

@@ -1,6 +1,7 @@
obj-y := clock.o obj-y := clock.o
obj-$(CONFIG_ARCH_REALVIEW) += sched-clock.o ifneq ($(CONFIG_ARCH_INTEGRATOR),y)
obj-$(CONFIG_ARCH_VERSATILE) += sched-clock.o obj-y += sched-clock.o
endif
ifeq ($(CONFIG_LEDS_CLASS),y) ifeq ($(CONFIG_LEDS_CLASS),y)
obj-$(CONFIG_ARCH_REALVIEW) += leds.o obj-$(CONFIG_ARCH_REALVIEW) += leds.o
obj-$(CONFIG_ARCH_VERSATILE) += leds.o obj-$(CONFIG_ARCH_VERSATILE) += leds.o

View File

@@ -0,0 +1,6 @@
#ifndef ARM_PLAT_SCHED_CLOCK_H
#define ARM_PLAT_SCHED_CLOCK_H
void versatile_sched_clock_init(void __iomem *, unsigned long);
#endif

View File

@@ -18,36 +18,41 @@
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ */
#include <linux/cnt32_to_63.h>
#include <linux/io.h> #include <linux/io.h>
#include <asm/div64.h> #include <linux/sched.h>
#include <mach/hardware.h> #include <asm/sched_clock.h>
#include <mach/platform.h> #include <plat/sched_clock.h>
#ifdef VERSATILE_SYS_BASE static DEFINE_CLOCK_DATA(cd);
#define REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET) static void __iomem *ctr;
#endif
#ifdef REALVIEW_SYS_BASE
#define REFCOUNTER (__io_address(REALVIEW_SYS_BASE) + REALVIEW_SYS_24MHz_OFFSET)
#endif
/* /*
* This is the Realview and Versatile sched_clock implementation. This * Constants generated by clocks_calc_mult_shift(m, s, 24MHz, NSEC_PER_SEC, 60).
* has a resolution of 41.7ns, and a maximum value of about 35583 days. * This gives a resolution of about 41ns and a wrap period of about 178s.
*
* The return value is guaranteed to be monotonic in that range as
* long as there is always less than 89 seconds between successive
* calls to this function.
*/ */
unsigned long long sched_clock(void) #define SC_MULT 2796202667u
#define SC_SHIFT 26
unsigned long long notrace sched_clock(void)
{ {
unsigned long long v = cnt32_to_63(readl(REFCOUNTER)); if (ctr) {
u32 cyc = readl(ctr);
/* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */ return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0,
v *= 125<<1; SC_MULT, SC_SHIFT);
do_div(v, 3<<1); } else
return 0;
return v; }
static void notrace versatile_update_sched_clock(void)
{
u32 cyc = readl(ctr);
update_sched_clock(&cd, cyc, (u32)~0);
}
void __init versatile_sched_clock_init(void __iomem *reg, unsigned long rate)
{
ctr = reg;
init_fixed_sched_clock(&cd, versatile_update_sched_clock,
32, rate, SC_MULT, SC_SHIFT);
} }

View File

@@ -152,6 +152,7 @@ clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec)
*/ */
for (sft = 32; sft > 0; sft--) { for (sft = 32; sft > 0; sft--) {
tmp = (u64) to << sft; tmp = (u64) to << sft;
tmp += from / 2;
do_div(tmp, from); do_div(tmp, from);
if ((tmp >> sftacc) == 0) if ((tmp >> sftacc) == 0)
break; break;