Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx: (66 commits)
  avr32: at32ap700x: fix typo in DMA master configuration
  dmaengine/dmatest: Pass timeout via module params
  dma: let IMX_DMA depend on IMX_HAVE_DMA_V1 instead of an explicit list of SoCs
  fsldma: make halt behave nicely on all supported controllers
  fsldma: reduce locking during descriptor cleanup
  fsldma: support async_tx dependencies and automatic unmapping
  fsldma: fix controller lockups
  fsldma: minor codingstyle and consistency fixes
  fsldma: improve link descriptor debugging
  fsldma: use channel name in printk output
  fsldma: move related helper functions near each other
  dmatest: fix automatic buffer unmap type
  drivers, pch_dma: Fix warning when CONFIG_PM=n.
  dmaengine/dw_dmac fix: use readl & writel instead of __raw_readl & __raw_writel
  avr32: at32ap700x: Specify DMA Flow Controller, Src and Dst msize
  dw_dmac: Setting Default Burst length for transfers as 16.
  dw_dmac: Allow src/dst msize & flow controller to be configured at runtime
  dw_dmac: Changing type of src_master and dest_master to u8.
  dw_dmac: Pass Channel Priority from platform_data
  dw_dmac: Pass Channel Allocation Order from platform_data
  ...
This commit is contained in:
Linus Torvalds
2011-03-22 17:53:13 -07:00
16 changed files with 2045 additions and 1318 deletions

View File

@ -0,0 +1,26 @@
/*
* Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __MACH_MXS_DMA_H__
#define __MACH_MXS_DMA_H__
struct mxs_dma_data {
int chan_irq;
};
static inline int mxs_dma_is_apbh(struct dma_chan *chan)
{
return !strcmp(dev_name(chan->device->dev), "mxs-dma-apbh");
}
static inline int mxs_dma_is_apbx(struct dma_chan *chan)
{
return !strcmp(dev_name(chan->device->dev), "mxs-dma-apbx");
}
#endif /* __MACH_MXS_DMA_H__ */

View File

@ -104,6 +104,8 @@ struct stedma40_half_channel_info {
* *
* @dir: MEM 2 MEM, PERIPH 2 MEM , MEM 2 PERIPH, PERIPH 2 PERIPH * @dir: MEM 2 MEM, PERIPH 2 MEM , MEM 2 PERIPH, PERIPH 2 PERIPH
* @high_priority: true if high-priority * @high_priority: true if high-priority
* @realtime: true if realtime mode is to be enabled. Only available on DMA40
* version 3+, i.e DB8500v2+
* @mode: channel mode: physical, logical, or operation * @mode: channel mode: physical, logical, or operation
* @mode_opt: options for the chosen channel mode * @mode_opt: options for the chosen channel mode
* @src_dev_type: Src device type * @src_dev_type: Src device type
@ -119,6 +121,7 @@ struct stedma40_half_channel_info {
struct stedma40_chan_cfg { struct stedma40_chan_cfg {
enum stedma40_xfer_dir dir; enum stedma40_xfer_dir dir;
bool high_priority; bool high_priority;
bool realtime;
enum stedma40_mode mode; enum stedma40_mode mode;
enum stedma40_mode_opt mode_opt; enum stedma40_mode_opt mode_opt;
int src_dev_type; int src_dev_type;
@ -168,25 +171,6 @@ struct stedma40_platform_data {
bool stedma40_filter(struct dma_chan *chan, void *data); bool stedma40_filter(struct dma_chan *chan, void *data);
/**
* stedma40_memcpy_sg() - extension of the dma framework, memcpy to/from
* scattergatter lists.
*
* @chan: dmaengine handle
* @sgl_dst: Destination scatter list
* @sgl_src: Source scatter list
* @sgl_len: The length of each scatterlist. Both lists must be of equal length
* and each element must match the corresponding element in the other scatter
* list.
* @flags: is actually enum dma_ctrl_flags. See dmaengine.h
*/
struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
struct scatterlist *sgl_dst,
struct scatterlist *sgl_src,
unsigned int sgl_len,
unsigned long flags);
/** /**
* stedma40_slave_mem() - Transfers a raw data buffer to or from a slave * stedma40_slave_mem() - Transfers a raw data buffer to or from a slave
* (=device) * (=device)

View File

@ -2048,6 +2048,11 @@ at32_add_device_ac97c(unsigned int id, struct ac97c_platform_data *data,
rx_dws->reg_width = DW_DMA_SLAVE_WIDTH_16BIT; rx_dws->reg_width = DW_DMA_SLAVE_WIDTH_16BIT;
rx_dws->cfg_hi = DWC_CFGH_SRC_PER(3); rx_dws->cfg_hi = DWC_CFGH_SRC_PER(3);
rx_dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL); rx_dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL);
rx_dws->src_master = 0;
rx_dws->dst_master = 1;
rx_dws->src_msize = DW_DMA_MSIZE_1;
rx_dws->dst_msize = DW_DMA_MSIZE_1;
rx_dws->fc = DW_DMA_FC_D_P2M;
} }
/* Check if DMA slave interface for playback should be configured. */ /* Check if DMA slave interface for playback should be configured. */
@ -2056,6 +2061,11 @@ at32_add_device_ac97c(unsigned int id, struct ac97c_platform_data *data,
tx_dws->reg_width = DW_DMA_SLAVE_WIDTH_16BIT; tx_dws->reg_width = DW_DMA_SLAVE_WIDTH_16BIT;
tx_dws->cfg_hi = DWC_CFGH_DST_PER(4); tx_dws->cfg_hi = DWC_CFGH_DST_PER(4);
tx_dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL); tx_dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL);
tx_dws->src_master = 0;
tx_dws->dst_master = 1;
tx_dws->src_msize = DW_DMA_MSIZE_1;
tx_dws->dst_msize = DW_DMA_MSIZE_1;
tx_dws->fc = DW_DMA_FC_D_M2P;
} }
if (platform_device_add_data(pdev, data, if (platform_device_add_data(pdev, data,
@ -2128,6 +2138,11 @@ at32_add_device_abdac(unsigned int id, struct atmel_abdac_pdata *data)
dws->reg_width = DW_DMA_SLAVE_WIDTH_32BIT; dws->reg_width = DW_DMA_SLAVE_WIDTH_32BIT;
dws->cfg_hi = DWC_CFGH_DST_PER(2); dws->cfg_hi = DWC_CFGH_DST_PER(2);
dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL); dws->cfg_lo &= ~(DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL);
dws->src_master = 0;
dws->dst_master = 1;
dws->src_msize = DW_DMA_MSIZE_1;
dws->dst_msize = DW_DMA_MSIZE_1;
dws->fc = DW_DMA_FC_D_M2P;
if (platform_device_add_data(pdev, data, if (platform_device_add_data(pdev, data,
sizeof(struct atmel_abdac_pdata))) sizeof(struct atmel_abdac_pdata)))

View File

@ -82,7 +82,7 @@ config INTEL_IOP_ADMA
config DW_DMAC config DW_DMAC
tristate "Synopsys DesignWare AHB DMA support" tristate "Synopsys DesignWare AHB DMA support"
depends on AVR32 depends on HAVE_CLK
select DMA_ENGINE select DMA_ENGINE
default y if CPU_AT32AP7000 default y if CPU_AT32AP7000
help help
@ -221,12 +221,20 @@ config IMX_SDMA
config IMX_DMA config IMX_DMA
tristate "i.MX DMA support" tristate "i.MX DMA support"
depends on ARCH_MX1 || ARCH_MX21 || MACH_MX27 depends on IMX_HAVE_DMA_V1
select DMA_ENGINE select DMA_ENGINE
help help
Support the i.MX DMA engine. This engine is integrated into Support the i.MX DMA engine. This engine is integrated into
Freescale i.MX1/21/27 chips. Freescale i.MX1/21/27 chips.
config MXS_DMA
bool "MXS DMA support"
depends on SOC_IMX23 || SOC_IMX28
select DMA_ENGINE
help
Support the MXS DMA engine. This engine including APBH-DMA
and APBX-DMA is integrated into Freescale i.MX23/28 chips.
config DMA_ENGINE config DMA_ENGINE
bool bool

View File

@ -19,6 +19,7 @@ obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_IMX_SDMA) += imx-sdma.o obj-$(CONFIG_IMX_SDMA) += imx-sdma.o
obj-$(CONFIG_IMX_DMA) += imx-dma.o obj-$(CONFIG_IMX_DMA) += imx-dma.o
obj-$(CONFIG_MXS_DMA) += mxs-dma.o
obj-$(CONFIG_TIMB_DMA) += timb_dma.o obj-$(CONFIG_TIMB_DMA) += timb_dma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
obj-$(CONFIG_PL330_DMA) += pl330.o obj-$(CONFIG_PL330_DMA) += pl330.o

View File

@ -54,6 +54,11 @@ module_param(pq_sources, uint, S_IRUGO);
MODULE_PARM_DESC(pq_sources, MODULE_PARM_DESC(pq_sources,
"Number of p+q source buffers (default: 3)"); "Number of p+q source buffers (default: 3)");
static int timeout = 3000;
module_param(timeout, uint, S_IRUGO);
MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), \
Pass -1 for infinite timeout");
/* /*
* Initialization patterns. All bytes in the source buffer has bit 7 * Initialization patterns. All bytes in the source buffer has bit 7
* set, all bytes in the destination buffer has bit 7 cleared. * set, all bytes in the destination buffer has bit 7 cleared.
@ -285,7 +290,12 @@ static int dmatest_func(void *data)
set_user_nice(current, 10); set_user_nice(current, 10);
flags = DMA_CTRL_ACK | DMA_COMPL_SKIP_DEST_UNMAP | DMA_PREP_INTERRUPT; /*
* src buffers are freed by the DMAEngine code with dma_unmap_single()
* dst buffers are freed by ourselves below
*/
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT
| DMA_COMPL_SKIP_DEST_UNMAP | DMA_COMPL_SRC_UNMAP_SINGLE;
while (!kthread_should_stop() while (!kthread_should_stop()
&& !(iterations && total_tests >= iterations)) { && !(iterations && total_tests >= iterations)) {
@ -294,7 +304,7 @@ static int dmatest_func(void *data)
dma_addr_t dma_srcs[src_cnt]; dma_addr_t dma_srcs[src_cnt];
dma_addr_t dma_dsts[dst_cnt]; dma_addr_t dma_dsts[dst_cnt];
struct completion cmp; struct completion cmp;
unsigned long tmo = msecs_to_jiffies(3000); unsigned long tmo = msecs_to_jiffies(timeout);
u8 align = 0; u8 align = 0;
total_tests++; total_tests++;

View File

@ -32,26 +32,30 @@
* which does not support descriptor writeback. * which does not support descriptor writeback.
*/ */
/* NOTE: DMS+SMS is system-specific. We should get this information #define DWC_DEFAULT_CTLLO(private) ({ \
* from the platform code somehow. struct dw_dma_slave *__slave = (private); \
*/ int dms = __slave ? __slave->dst_master : 0; \
#define DWC_DEFAULT_CTLLO (DWC_CTLL_DST_MSIZE(0) \ int sms = __slave ? __slave->src_master : 1; \
| DWC_CTLL_SRC_MSIZE(0) \ u8 smsize = __slave ? __slave->src_msize : DW_DMA_MSIZE_16; \
| DWC_CTLL_DMS(0) \ u8 dmsize = __slave ? __slave->dst_msize : DW_DMA_MSIZE_16; \
| DWC_CTLL_SMS(1) \ \
| DWC_CTLL_LLP_D_EN \ (DWC_CTLL_DST_MSIZE(dmsize) \
| DWC_CTLL_LLP_S_EN) | DWC_CTLL_SRC_MSIZE(smsize) \
| DWC_CTLL_LLP_D_EN \
| DWC_CTLL_LLP_S_EN \
| DWC_CTLL_DMS(dms) \
| DWC_CTLL_SMS(sms)); \
})
/* /*
* This is configuration-dependent and usually a funny size like 4095. * This is configuration-dependent and usually a funny size like 4095.
* Let's round it down to the nearest power of two.
* *
* Note that this is a transfer count, i.e. if we transfer 32-bit * Note that this is a transfer count, i.e. if we transfer 32-bit
* words, we can do 8192 bytes per descriptor. * words, we can do 16380 bytes per descriptor.
* *
* This parameter is also system-specific. * This parameter is also system-specific.
*/ */
#define DWC_MAX_COUNT 2048U #define DWC_MAX_COUNT 4095U
/* /*
* Number of descriptors to allocate for each channel. This should be * Number of descriptors to allocate for each channel. This should be
@ -84,11 +88,6 @@ static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
return list_entry(dwc->active_list.next, struct dw_desc, desc_node); return list_entry(dwc->active_list.next, struct dw_desc, desc_node);
} }
static struct dw_desc *dwc_first_queued(struct dw_dma_chan *dwc)
{
return list_entry(dwc->queue.next, struct dw_desc, desc_node);
}
static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc) static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
{ {
struct dw_desc *desc, *_desc; struct dw_desc *desc, *_desc;
@ -201,6 +200,7 @@ dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc)
dma_async_tx_callback callback; dma_async_tx_callback callback;
void *param; void *param;
struct dma_async_tx_descriptor *txd = &desc->txd; struct dma_async_tx_descriptor *txd = &desc->txd;
struct dw_desc *child;
dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie); dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
@ -209,6 +209,12 @@ dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc)
param = txd->callback_param; param = txd->callback_param;
dwc_sync_desc_for_cpu(dwc, desc); dwc_sync_desc_for_cpu(dwc, desc);
/* async_tx_ack */
list_for_each_entry(child, &desc->tx_list, desc_node)
async_tx_ack(&child->txd);
async_tx_ack(&desc->txd);
list_splice_init(&desc->tx_list, &dwc->free_list); list_splice_init(&desc->tx_list, &dwc->free_list);
list_move(&desc->desc_node, &dwc->free_list); list_move(&desc->desc_node, &dwc->free_list);
@ -259,10 +265,11 @@ static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
* Submit queued descriptors ASAP, i.e. before we go through * Submit queued descriptors ASAP, i.e. before we go through
* the completed ones. * the completed ones.
*/ */
if (!list_empty(&dwc->queue))
dwc_dostart(dwc, dwc_first_queued(dwc));
list_splice_init(&dwc->active_list, &list); list_splice_init(&dwc->active_list, &list);
list_splice_init(&dwc->queue, &dwc->active_list); if (!list_empty(&dwc->queue)) {
list_move(dwc->queue.next, &dwc->active_list);
dwc_dostart(dwc, dwc_first_active(dwc));
}
list_for_each_entry_safe(desc, _desc, &list, desc_node) list_for_each_entry_safe(desc, _desc, &list, desc_node)
dwc_descriptor_complete(dwc, desc); dwc_descriptor_complete(dwc, desc);
@ -291,6 +298,9 @@ static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
return; return;
} }
if (list_empty(&dwc->active_list))
return;
dev_vdbg(chan2dev(&dwc->chan), "scan_descriptors: llp=0x%x\n", llp); dev_vdbg(chan2dev(&dwc->chan), "scan_descriptors: llp=0x%x\n", llp);
list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) { list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
@ -319,8 +329,8 @@ static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
cpu_relax(); cpu_relax();
if (!list_empty(&dwc->queue)) { if (!list_empty(&dwc->queue)) {
dwc_dostart(dwc, dwc_first_queued(dwc)); list_move(dwc->queue.next, &dwc->active_list);
list_splice_init(&dwc->queue, &dwc->active_list); dwc_dostart(dwc, dwc_first_active(dwc));
} }
} }
@ -346,7 +356,7 @@ static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
*/ */
bad_desc = dwc_first_active(dwc); bad_desc = dwc_first_active(dwc);
list_del_init(&bad_desc->desc_node); list_del_init(&bad_desc->desc_node);
list_splice_init(&dwc->queue, dwc->active_list.prev); list_move(dwc->queue.next, dwc->active_list.prev);
/* Clear the error flag and try to restart the controller */ /* Clear the error flag and try to restart the controller */
dma_writel(dw, CLEAR.ERROR, dwc->mask); dma_writel(dw, CLEAR.ERROR, dwc->mask);
@ -541,8 +551,8 @@ static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
if (list_empty(&dwc->active_list)) { if (list_empty(&dwc->active_list)) {
dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
desc->txd.cookie); desc->txd.cookie);
dwc_dostart(dwc, desc);
list_add_tail(&desc->desc_node, &dwc->active_list); list_add_tail(&desc->desc_node, &dwc->active_list);
dwc_dostart(dwc, dwc_first_active(dwc));
} else { } else {
dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
desc->txd.cookie); desc->txd.cookie);
@ -581,14 +591,16 @@ dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
* We can be a lot more clever here, but this should take care * We can be a lot more clever here, but this should take care
* of the most common optimization. * of the most common optimization.
*/ */
if (!((src | dest | len) & 3)) if (!((src | dest | len) & 7))
src_width = dst_width = 3;
else if (!((src | dest | len) & 3))
src_width = dst_width = 2; src_width = dst_width = 2;
else if (!((src | dest | len) & 1)) else if (!((src | dest | len) & 1))
src_width = dst_width = 1; src_width = dst_width = 1;
else else
src_width = dst_width = 0; src_width = dst_width = 0;
ctllo = DWC_DEFAULT_CTLLO ctllo = DWC_DEFAULT_CTLLO(chan->private)
| DWC_CTLL_DST_WIDTH(dst_width) | DWC_CTLL_DST_WIDTH(dst_width)
| DWC_CTLL_SRC_WIDTH(src_width) | DWC_CTLL_SRC_WIDTH(src_width)
| DWC_CTLL_DST_INC | DWC_CTLL_DST_INC
@ -669,11 +681,11 @@ dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
switch (direction) { switch (direction) {
case DMA_TO_DEVICE: case DMA_TO_DEVICE:
ctllo = (DWC_DEFAULT_CTLLO ctllo = (DWC_DEFAULT_CTLLO(chan->private)
| DWC_CTLL_DST_WIDTH(reg_width) | DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_FIX | DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC | DWC_CTLL_SRC_INC
| DWC_CTLL_FC_M2P); | DWC_CTLL_FC(dws->fc));
reg = dws->tx_reg; reg = dws->tx_reg;
for_each_sg(sgl, sg, sg_len, i) { for_each_sg(sgl, sg, sg_len, i) {
struct dw_desc *desc; struct dw_desc *desc;
@ -714,11 +726,11 @@ dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
} }
break; break;
case DMA_FROM_DEVICE: case DMA_FROM_DEVICE:
ctllo = (DWC_DEFAULT_CTLLO ctllo = (DWC_DEFAULT_CTLLO(chan->private)
| DWC_CTLL_SRC_WIDTH(reg_width) | DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_INC | DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX | DWC_CTLL_SRC_FIX
| DWC_CTLL_FC_P2M); | DWC_CTLL_FC(dws->fc));
reg = dws->rx_reg; reg = dws->rx_reg;
for_each_sg(sgl, sg, sg_len, i) { for_each_sg(sgl, sg, sg_len, i) {
@ -834,7 +846,9 @@ dwc_tx_status(struct dma_chan *chan,
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret != DMA_SUCCESS) { if (ret != DMA_SUCCESS) {
spin_lock_bh(&dwc->lock);
dwc_scan_descriptors(to_dw_dma(chan->device), dwc); dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
spin_unlock_bh(&dwc->lock);
last_complete = dwc->completed; last_complete = dwc->completed;
last_used = chan->cookie; last_used = chan->cookie;
@ -889,8 +903,11 @@ static int dwc_alloc_chan_resources(struct dma_chan *chan)
BUG_ON(!dws->dma_dev || dws->dma_dev != dw->dma.dev); BUG_ON(!dws->dma_dev || dws->dma_dev != dw->dma.dev);
cfghi = dws->cfg_hi; cfghi = dws->cfg_hi;
cfglo = dws->cfg_lo; cfglo = dws->cfg_lo & ~DWC_CFGL_CH_PRIOR_MASK;
} }
cfglo |= DWC_CFGL_CH_PRIOR(dwc->priority);
channel_writel(dwc, CFG_LO, cfglo); channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi); channel_writel(dwc, CFG_HI, cfghi);
@ -1126,23 +1143,23 @@ struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
case DMA_TO_DEVICE: case DMA_TO_DEVICE:
desc->lli.dar = dws->tx_reg; desc->lli.dar = dws->tx_reg;
desc->lli.sar = buf_addr + (period_len * i); desc->lli.sar = buf_addr + (period_len * i);
desc->lli.ctllo = (DWC_DEFAULT_CTLLO desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan->private)
| DWC_CTLL_DST_WIDTH(reg_width) | DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_SRC_WIDTH(reg_width) | DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_FIX | DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC | DWC_CTLL_SRC_INC
| DWC_CTLL_FC_M2P | DWC_CTLL_FC(dws->fc)
| DWC_CTLL_INT_EN); | DWC_CTLL_INT_EN);
break; break;
case DMA_FROM_DEVICE: case DMA_FROM_DEVICE:
desc->lli.dar = buf_addr + (period_len * i); desc->lli.dar = buf_addr + (period_len * i);
desc->lli.sar = dws->rx_reg; desc->lli.sar = dws->rx_reg;
desc->lli.ctllo = (DWC_DEFAULT_CTLLO desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan->private)
| DWC_CTLL_SRC_WIDTH(reg_width) | DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_WIDTH(reg_width) | DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_INC | DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX | DWC_CTLL_SRC_FIX
| DWC_CTLL_FC_P2M | DWC_CTLL_FC(dws->fc)
| DWC_CTLL_INT_EN); | DWC_CTLL_INT_EN);
break; break;
default: default:
@ -1307,7 +1324,17 @@ static int __init dw_probe(struct platform_device *pdev)
dwc->chan.device = &dw->dma; dwc->chan.device = &dw->dma;
dwc->chan.cookie = dwc->completed = 1; dwc->chan.cookie = dwc->completed = 1;
dwc->chan.chan_id = i; dwc->chan.chan_id = i;
list_add_tail(&dwc->chan.device_node, &dw->dma.channels); if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
list_add_tail(&dwc->chan.device_node,
&dw->dma.channels);
else
list_add(&dwc->chan.device_node, &dw->dma.channels);
/* 7 is highest priority & 0 is lowest. */
if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
dwc->priority = 7 - i;
else
dwc->priority = i;
dwc->ch_regs = &__dw_regs(dw)->CHAN[i]; dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
spin_lock_init(&dwc->lock); spin_lock_init(&dwc->lock);
@ -1335,6 +1362,8 @@ static int __init dw_probe(struct platform_device *pdev)
dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask); dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
dma_cap_set(DMA_SLAVE, dw->dma.cap_mask); dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
if (pdata->is_private)
dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
dw->dma.dev = &pdev->dev; dw->dma.dev = &pdev->dev;
dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources; dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
dw->dma.device_free_chan_resources = dwc_free_chan_resources; dw->dma.device_free_chan_resources = dwc_free_chan_resources;
@ -1447,7 +1476,7 @@ static int __init dw_init(void)
{ {
return platform_driver_probe(&dw_driver, dw_probe); return platform_driver_probe(&dw_driver, dw_probe);
} }
module_init(dw_init); subsys_initcall(dw_init);
static void __exit dw_exit(void) static void __exit dw_exit(void)
{ {

View File

@ -86,6 +86,7 @@ struct dw_dma_regs {
#define DWC_CTLL_SRC_MSIZE(n) ((n)<<14) #define DWC_CTLL_SRC_MSIZE(n) ((n)<<14)
#define DWC_CTLL_S_GATH_EN (1 << 17) /* src gather, !FIX */ #define DWC_CTLL_S_GATH_EN (1 << 17) /* src gather, !FIX */
#define DWC_CTLL_D_SCAT_EN (1 << 18) /* dst scatter, !FIX */ #define DWC_CTLL_D_SCAT_EN (1 << 18) /* dst scatter, !FIX */
#define DWC_CTLL_FC(n) ((n) << 20)
#define DWC_CTLL_FC_M2M (0 << 20) /* mem-to-mem */ #define DWC_CTLL_FC_M2M (0 << 20) /* mem-to-mem */
#define DWC_CTLL_FC_M2P (1 << 20) /* mem-to-periph */ #define DWC_CTLL_FC_M2P (1 << 20) /* mem-to-periph */
#define DWC_CTLL_FC_P2M (2 << 20) /* periph-to-mem */ #define DWC_CTLL_FC_P2M (2 << 20) /* periph-to-mem */
@ -101,6 +102,8 @@ struct dw_dma_regs {
#define DWC_CTLH_BLOCK_TS_MASK 0x00000fff #define DWC_CTLH_BLOCK_TS_MASK 0x00000fff
/* Bitfields in CFG_LO. Platform-configurable bits are in <linux/dw_dmac.h> */ /* Bitfields in CFG_LO. Platform-configurable bits are in <linux/dw_dmac.h> */
#define DWC_CFGL_CH_PRIOR_MASK (0x7 << 5) /* priority mask */
#define DWC_CFGL_CH_PRIOR(x) ((x) << 5) /* priority */
#define DWC_CFGL_CH_SUSP (1 << 8) /* pause xfer */ #define DWC_CFGL_CH_SUSP (1 << 8) /* pause xfer */
#define DWC_CFGL_FIFO_EMPTY (1 << 9) /* pause xfer */ #define DWC_CFGL_FIFO_EMPTY (1 << 9) /* pause xfer */
#define DWC_CFGL_HS_DST (1 << 10) /* handshake w/dst */ #define DWC_CFGL_HS_DST (1 << 10) /* handshake w/dst */
@ -134,6 +137,7 @@ struct dw_dma_chan {
struct dma_chan chan; struct dma_chan chan;
void __iomem *ch_regs; void __iomem *ch_regs;
u8 mask; u8 mask;
u8 priority;
spinlock_t lock; spinlock_t lock;
@ -155,9 +159,9 @@ __dwc_regs(struct dw_dma_chan *dwc)
} }
#define channel_readl(dwc, name) \ #define channel_readl(dwc, name) \
__raw_readl(&(__dwc_regs(dwc)->name)) readl(&(__dwc_regs(dwc)->name))
#define channel_writel(dwc, name, val) \ #define channel_writel(dwc, name, val) \
__raw_writel((val), &(__dwc_regs(dwc)->name)) writel((val), &(__dwc_regs(dwc)->name))
static inline struct dw_dma_chan *to_dw_dma_chan(struct dma_chan *chan) static inline struct dw_dma_chan *to_dw_dma_chan(struct dma_chan *chan)
{ {
@ -181,9 +185,9 @@ static inline struct dw_dma_regs __iomem *__dw_regs(struct dw_dma *dw)
} }
#define dma_readl(dw, name) \ #define dma_readl(dw, name) \
__raw_readl(&(__dw_regs(dw)->name)) readl(&(__dw_regs(dw)->name))
#define dma_writel(dw, name, val) \ #define dma_writel(dw, name, val) \
__raw_writel((val), &(__dw_regs(dw)->name)) writel((val), &(__dw_regs(dw)->name))
#define channel_set_bit(dw, reg, mask) \ #define channel_set_bit(dw, reg, mask) \
dma_writel(dw, reg, ((mask) << 8) | (mask)) dma_writel(dw, reg, ((mask) << 8) | (mask))

View File

@ -37,35 +37,16 @@
#include "fsldma.h" #include "fsldma.h"
static const char msg_ld_oom[] = "No free memory for link descriptor\n"; #define chan_dbg(chan, fmt, arg...) \
dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
#define chan_err(chan, fmt, arg...) \
dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
static void dma_init(struct fsldma_chan *chan) static const char msg_ld_oom[] = "No free memory for link descriptor";
{
/* Reset the channel */
DMA_OUT(chan, &chan->regs->mr, 0, 32);
switch (chan->feature & FSL_DMA_IP_MASK) { /*
case FSL_DMA_IP_85XX: * Register Helpers
/* Set the channel to below modes: */
* EIE - Error interrupt enable
* EOSIE - End of segments interrupt enable (basic mode)
* EOLNIE - End of links interrupt enable
* BWC - Bandwidth sharing among channels
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE
| FSL_DMA_MR_EOSIE, 32);
break;
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
* PRC_RM - PCI read multiple
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM, 32);
break;
}
}
static void set_sr(struct fsldma_chan *chan, u32 val) static void set_sr(struct fsldma_chan *chan, u32 val)
{ {
@ -77,42 +58,6 @@ static u32 get_sr(struct fsldma_chan *chan)
return DMA_IN(chan, &chan->regs->sr, 32); return DMA_IN(chan, &chan->regs->sr, 32);
} }
static void set_desc_cnt(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, u32 count)
{
hw->count = CPU_TO_DMA(chan, count, 32);
}
static void set_desc_src(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t src)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
}
static void set_desc_dst(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
}
static void set_desc_next(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t next)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0;
hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
}
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
{ {
DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
@ -123,70 +68,77 @@ static dma_addr_t get_cdar(struct fsldma_chan *chan)
return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
} }
static dma_addr_t get_ndar(struct fsldma_chan *chan)
{
return DMA_IN(chan, &chan->regs->ndar, 64);
}
static u32 get_bcr(struct fsldma_chan *chan) static u32 get_bcr(struct fsldma_chan *chan)
{ {
return DMA_IN(chan, &chan->regs->bcr, 32); return DMA_IN(chan, &chan->regs->bcr, 32);
} }
static int dma_is_idle(struct fsldma_chan *chan) /*
* Descriptor Helpers
*/
static void set_desc_cnt(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, u32 count)
{ {
u32 sr = get_sr(chan); hw->count = CPU_TO_DMA(chan, count, 32);
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
} }
static void dma_start(struct fsldma_chan *chan) static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
{ {
u32 mode; return DMA_TO_CPU(chan, desc->hw.count, 32);
mode = DMA_IN(chan, &chan->regs->mr, 32);
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(chan, &chan->regs->bcr, 0, 32);
mode |= FSL_DMA_MR_EMP_EN;
} else {
mode &= ~FSL_DMA_MR_EMP_EN;
}
}
if (chan->feature & FSL_DMA_CHAN_START_EXT)
mode |= FSL_DMA_MR_EMS_EN;
else
mode |= FSL_DMA_MR_CS;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
} }
static void dma_halt(struct fsldma_chan *chan) static void set_desc_src(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t src)
{ {
u32 mode; u64 snoop_bits;
int i;
mode = DMA_IN(chan, &chan->regs->mr, 32); snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
mode |= FSL_DMA_MR_CA; ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
DMA_OUT(chan, &chan->regs->mr, mode, 32); hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
DMA_OUT(chan, &chan->regs->mr, mode, 32);
for (i = 0; i < 100; i++) {
if (dma_is_idle(chan))
return;
udelay(10);
}
if (!dma_is_idle(chan))
dev_err(chan->dev, "DMA halt timeout!\n");
} }
static void set_ld_eol(struct fsldma_chan *chan, static dma_addr_t get_desc_src(struct fsldma_chan *chan,
struct fsl_desc_sw *desc) struct fsl_desc_sw *desc)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
}
static void set_desc_dst(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
}
static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
struct fsl_desc_sw *desc)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
}
static void set_desc_next(struct fsldma_chan *chan,
struct fsl_dma_ld_hw *hw, dma_addr_t next)
{
u64 snoop_bits;
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0;
hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
}
static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
{ {
u64 snoop_bits; u64 snoop_bits;
@ -198,6 +150,108 @@ static void set_ld_eol(struct fsldma_chan *chan,
| snoop_bits, 64); | snoop_bits, 64);
} }
/*
* DMA Engine Hardware Control Helpers
*/
static void dma_init(struct fsldma_chan *chan)
{
/* Reset the channel */
DMA_OUT(chan, &chan->regs->mr, 0, 32);
switch (chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
/* Set the channel to below modes:
* EIE - Error interrupt enable
* EOLNIE - End of links interrupt enable
* BWC - Bandwidth sharing among channels
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
break;
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
* PRC_RM - PCI read multiple
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM, 32);
break;
}
}
static int dma_is_idle(struct fsldma_chan *chan)
{
u32 sr = get_sr(chan);
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
}
/*
* Start the DMA controller
*
* Preconditions:
* - the CDAR register must point to the start descriptor
* - the MRn[CS] bit must be cleared
*/
static void dma_start(struct fsldma_chan *chan)
{
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(chan, &chan->regs->bcr, 0, 32);
mode |= FSL_DMA_MR_EMP_EN;
} else {
mode &= ~FSL_DMA_MR_EMP_EN;
}
if (chan->feature & FSL_DMA_CHAN_START_EXT) {
mode |= FSL_DMA_MR_EMS_EN;
} else {
mode &= ~FSL_DMA_MR_EMS_EN;
mode |= FSL_DMA_MR_CS;
}
DMA_OUT(chan, &chan->regs->mr, mode, 32);
}
static void dma_halt(struct fsldma_chan *chan)
{
u32 mode;
int i;
/* read the mode register */
mode = DMA_IN(chan, &chan->regs->mr, 32);
/*
* The 85xx controller supports channel abort, which will stop
* the current transfer. On 83xx, this bit is the transfer error
* mask bit, which should not be changed.
*/
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
mode |= FSL_DMA_MR_CA;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
mode &= ~FSL_DMA_MR_CA;
}
/* stop the DMA controller */
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
DMA_OUT(chan, &chan->regs->mr, mode, 32);
/* wait for the DMA controller to become idle */
for (i = 0; i < 100; i++) {
if (dma_is_idle(chan))
return;
udelay(10);
}
if (!dma_is_idle(chan))
chan_err(chan, "DMA halt timeout!\n");
}
/** /**
* fsl_chan_set_src_loop_size - Set source address hold transfer size * fsl_chan_set_src_loop_size - Set source address hold transfer size
* @chan : Freescale DMA channel * @chan : Freescale DMA channel
@ -321,8 +375,7 @@ static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
chan->feature &= ~FSL_DMA_CHAN_START_EXT; chan->feature &= ~FSL_DMA_CHAN_START_EXT;
} }
static void append_ld_queue(struct fsldma_chan *chan, static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
struct fsl_desc_sw *desc)
{ {
struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
@ -363,8 +416,8 @@ static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
cookie = chan->common.cookie; cookie = chan->common.cookie;
list_for_each_entry(child, &desc->tx_list, node) { list_for_each_entry(child, &desc->tx_list, node) {
cookie++; cookie++;
if (cookie < 0) if (cookie < DMA_MIN_COOKIE)
cookie = 1; cookie = DMA_MIN_COOKIE;
child->async_tx.cookie = cookie; child->async_tx.cookie = cookie;
} }
@ -385,15 +438,14 @@ static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
* *
* Return - The descriptor allocated. NULL for failed. * Return - The descriptor allocated. NULL for failed.
*/ */
static struct fsl_desc_sw *fsl_dma_alloc_descriptor( static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
struct fsldma_chan *chan)
{ {
struct fsl_desc_sw *desc; struct fsl_desc_sw *desc;
dma_addr_t pdesc; dma_addr_t pdesc;
desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
if (!desc) { if (!desc) {
dev_dbg(chan->dev, "out of memory for link desc\n"); chan_dbg(chan, "out of memory for link descriptor\n");
return NULL; return NULL;
} }
@ -403,10 +455,13 @@ static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
desc->async_tx.tx_submit = fsl_dma_tx_submit; desc->async_tx.tx_submit = fsl_dma_tx_submit;
desc->async_tx.phys = pdesc; desc->async_tx.phys = pdesc;
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p allocated\n", desc);
#endif
return desc; return desc;
} }
/** /**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
* @chan : Freescale DMA channel * @chan : Freescale DMA channel
@ -427,13 +482,11 @@ static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
* We need the descriptor to be aligned to 32bytes * We need the descriptor to be aligned to 32bytes
* for meeting FSL DMA specification requirement. * for meeting FSL DMA specification requirement.
*/ */
chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", chan->desc_pool = dma_pool_create(chan->name, chan->dev,
chan->dev,
sizeof(struct fsl_desc_sw), sizeof(struct fsl_desc_sw),
__alignof__(struct fsl_desc_sw), 0); __alignof__(struct fsl_desc_sw), 0);
if (!chan->desc_pool) { if (!chan->desc_pool) {
dev_err(chan->dev, "unable to allocate channel %d " chan_err(chan, "unable to allocate descriptor pool\n");
"descriptor pool\n", chan->id);
return -ENOMEM; return -ENOMEM;
} }
@ -455,6 +508,9 @@ static void fsldma_free_desc_list(struct fsldma_chan *chan,
list_for_each_entry_safe(desc, _desc, list, node) { list_for_each_entry_safe(desc, _desc, list, node) {
list_del(&desc->node); list_del(&desc->node);
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
} }
} }
@ -466,6 +522,9 @@ static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
list_for_each_entry_safe_reverse(desc, _desc, list, node) { list_for_each_entry_safe_reverse(desc, _desc, list, node) {
list_del(&desc->node); list_del(&desc->node);
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
} }
} }
@ -479,7 +538,7 @@ static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
struct fsldma_chan *chan = to_fsl_chan(dchan); struct fsldma_chan *chan = to_fsl_chan(dchan);
unsigned long flags; unsigned long flags;
dev_dbg(chan->dev, "Free all channel resources.\n"); chan_dbg(chan, "free all channel resources\n");
spin_lock_irqsave(&chan->desc_lock, flags); spin_lock_irqsave(&chan->desc_lock, flags);
fsldma_free_desc_list(chan, &chan->ld_pending); fsldma_free_desc_list(chan, &chan->ld_pending);
fsldma_free_desc_list(chan, &chan->ld_running); fsldma_free_desc_list(chan, &chan->ld_running);
@ -502,7 +561,7 @@ fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
new = fsl_dma_alloc_descriptor(chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(chan->dev, msg_ld_oom); chan_err(chan, "%s\n", msg_ld_oom);
return NULL; return NULL;
} }
@ -512,14 +571,15 @@ fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
/* Insert the link descriptor to the LD ring */ /* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &new->tx_list); list_add_tail(&new->node, &new->tx_list);
/* Set End-of-link to the last link descriptor of new list*/ /* Set End-of-link to the last link descriptor of new list */
set_ld_eol(chan, new); set_ld_eol(chan, new);
return &new->async_tx; return &new->async_tx;
} }
static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( static struct dma_async_tx_descriptor *
struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src, fsl_dma_prep_memcpy(struct dma_chan *dchan,
dma_addr_t dma_dst, dma_addr_t dma_src,
size_t len, unsigned long flags) size_t len, unsigned long flags)
{ {
struct fsldma_chan *chan; struct fsldma_chan *chan;
@ -539,12 +599,9 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
/* Allocate the link descriptor from DMA pool */ /* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(chan->dev, msg_ld_oom); chan_err(chan, "%s\n", msg_ld_oom);
goto fail; goto fail;
} }
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(chan->dev, "new link desc alloc %p\n", new);
#endif
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
@ -572,7 +629,7 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
new->async_tx.flags = flags; /* client is in control of this ack */ new->async_tx.flags = flags; /* client is in control of this ack */
new->async_tx.cookie = -EBUSY; new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list*/ /* Set End-of-link to the last link descriptor of new list */
set_ld_eol(chan, new); set_ld_eol(chan, new);
return &first->async_tx; return &first->async_tx;
@ -627,12 +684,9 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
/* allocate and populate the descriptor */ /* allocate and populate the descriptor */
new = fsl_dma_alloc_descriptor(chan); new = fsl_dma_alloc_descriptor(chan);
if (!new) { if (!new) {
dev_err(chan->dev, msg_ld_oom); chan_err(chan, "%s\n", msg_ld_oom);
goto fail; goto fail;
} }
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(chan->dev, "new link desc alloc %p\n", new);
#endif
set_desc_cnt(chan, &new->hw, len); set_desc_cnt(chan, &new->hw, len);
set_desc_src(chan, &new->hw, src); set_desc_src(chan, &new->hw, src);
@ -744,14 +798,15 @@ static int fsl_dma_device_control(struct dma_chan *dchan,
switch (cmd) { switch (cmd) {
case DMA_TERMINATE_ALL: case DMA_TERMINATE_ALL:
spin_lock_irqsave(&chan->desc_lock, flags);
/* Halt the DMA engine */ /* Halt the DMA engine */
dma_halt(chan); dma_halt(chan);
spin_lock_irqsave(&chan->desc_lock, flags);
/* Remove and free all of the descriptors in the LD queue */ /* Remove and free all of the descriptors in the LD queue */
fsldma_free_desc_list(chan, &chan->ld_pending); fsldma_free_desc_list(chan, &chan->ld_pending);
fsldma_free_desc_list(chan, &chan->ld_running); fsldma_free_desc_list(chan, &chan->ld_running);
chan->idle = true;
spin_unlock_irqrestore(&chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
return 0; return 0;
@ -789,139 +844,86 @@ static int fsl_dma_device_control(struct dma_chan *dchan,
} }
/** /**
* fsl_dma_update_completed_cookie - Update the completed cookie. * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
* @chan : Freescale DMA channel
*
* CONTEXT: hardirq
*/
static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
{
struct fsl_desc_sw *desc;
unsigned long flags;
dma_cookie_t cookie;
spin_lock_irqsave(&chan->desc_lock, flags);
if (list_empty(&chan->ld_running)) {
dev_dbg(chan->dev, "no running descriptors\n");
goto out_unlock;
}
/* Get the last descriptor, update the cookie to that */
desc = to_fsl_desc(chan->ld_running.prev);
if (dma_is_idle(chan))
cookie = desc->async_tx.cookie;
else {
cookie = desc->async_tx.cookie - 1;
if (unlikely(cookie < DMA_MIN_COOKIE))
cookie = DMA_MAX_COOKIE;
}
chan->completed_cookie = cookie;
out_unlock:
spin_unlock_irqrestore(&chan->desc_lock, flags);
}
/**
* fsldma_desc_status - Check the status of a descriptor
* @chan: Freescale DMA channel * @chan: Freescale DMA channel
* @desc: DMA SW descriptor * @desc: descriptor to cleanup and free
* *
* This function will return the status of the given descriptor * This function is used on a descriptor which has been executed by the DMA
* controller. It will run any callbacks, submit any dependencies, and then
* free the descriptor.
*/ */
static enum dma_status fsldma_desc_status(struct fsldma_chan *chan, static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
struct fsl_desc_sw *desc) struct fsl_desc_sw *desc)
{ {
return dma_async_is_complete(desc->async_tx.cookie, struct dma_async_tx_descriptor *txd = &desc->async_tx;
chan->completed_cookie, struct device *dev = chan->common.device->dev;
chan->common.cookie); dma_addr_t src = get_desc_src(chan, desc);
} dma_addr_t dst = get_desc_dst(chan, desc);
u32 len = get_desc_cnt(chan, desc);
/** /* Run the link descriptor callback function */
* fsl_chan_ld_cleanup - Clean up link descriptors if (txd->callback) {
* @chan : Freescale DMA channel #ifdef FSL_DMA_LD_DEBUG
* chan_dbg(chan, "LD %p callback\n", desc);
* This function clean up the ld_queue of DMA channel. #endif
*/ txd->callback(txd->callback_param);
static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
{
struct fsl_desc_sw *desc, *_desc;
unsigned long flags;
spin_lock_irqsave(&chan->desc_lock, flags);
dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
dma_async_tx_callback callback;
void *callback_param;
if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
break;
/* Remove from the list of running transactions */
list_del(&desc->node);
/* Run the link descriptor callback function */
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
if (callback) {
spin_unlock_irqrestore(&chan->desc_lock, flags);
dev_dbg(chan->dev, "LD %p callback\n", desc);
callback(callback_param);
spin_lock_irqsave(&chan->desc_lock, flags);
}
/* Run any dependencies, then free the descriptor */
dma_run_dependencies(&desc->async_tx);
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
} }
spin_unlock_irqrestore(&chan->desc_lock, flags); /* Run any dependencies */
dma_run_dependencies(txd);
/* Unmap the dst buffer, if requested */
if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
else
dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
}
/* Unmap the src buffer, if requested */
if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
else
dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
}
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, txd->phys);
} }
/** /**
* fsl_chan_xfer_ld_queue - transfer any pending transactions * fsl_chan_xfer_ld_queue - transfer any pending transactions
* @chan : Freescale DMA channel * @chan : Freescale DMA channel
* *
* This will make sure that any pending transactions will be run. * HARDWARE STATE: idle
* If the DMA controller is idle, it will be started. Otherwise, * LOCKING: must hold chan->desc_lock
* the DMA controller's interrupt handler will start any pending
* transactions when it becomes idle.
*/ */
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
{ {
struct fsl_desc_sw *desc; struct fsl_desc_sw *desc;
unsigned long flags;
spin_lock_irqsave(&chan->desc_lock, flags);
/* /*
* If the list of pending descriptors is empty, then we * If the list of pending descriptors is empty, then we
* don't need to do any work at all * don't need to do any work at all
*/ */
if (list_empty(&chan->ld_pending)) { if (list_empty(&chan->ld_pending)) {
dev_dbg(chan->dev, "no pending LDs\n"); chan_dbg(chan, "no pending LDs\n");
goto out_unlock; return;
} }
/* /*
* The DMA controller is not idle, which means the interrupt * The DMA controller is not idle, which means that the interrupt
* handler will start any queued transactions when it runs * handler will start any queued transactions when it runs after
* at the end of the current transaction * this transaction finishes
*/ */
if (!dma_is_idle(chan)) { if (!chan->idle) {
dev_dbg(chan->dev, "DMA controller still busy\n"); chan_dbg(chan, "DMA controller still busy\n");
goto out_unlock; return;
} }
/*
* TODO:
* make sure the dma_halt() function really un-wedges the
* controller as much as possible
*/
dma_halt(chan);
/* /*
* If there are some link descriptors which have not been * If there are some link descriptors which have not been
* transferred, we need to start the controller * transferred, we need to start the controller
@ -931,18 +933,32 @@ static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
* Move all elements from the queue of pending transactions * Move all elements from the queue of pending transactions
* onto the list of running transactions * onto the list of running transactions
*/ */
chan_dbg(chan, "idle, starting controller\n");
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
list_splice_tail_init(&chan->ld_pending, &chan->ld_running); list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
/*
* The 85xx DMA controller doesn't clear the channel start bit
* automatically at the end of a transfer. Therefore we must clear
* it in software before starting the transfer.
*/
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode &= ~FSL_DMA_MR_CS;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
}
/* /*
* Program the descriptor's address into the DMA controller, * Program the descriptor's address into the DMA controller,
* then start the DMA transaction * then start the DMA transaction
*/ */
set_cdar(chan, desc->async_tx.phys); set_cdar(chan, desc->async_tx.phys);
dma_start(chan); get_cdar(chan);
out_unlock: dma_start(chan);
spin_unlock_irqrestore(&chan->desc_lock, flags); chan->idle = false;
} }
/** /**
@ -952,7 +968,11 @@ out_unlock:
static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
{ {
struct fsldma_chan *chan = to_fsl_chan(dchan); struct fsldma_chan *chan = to_fsl_chan(dchan);
unsigned long flags;
spin_lock_irqsave(&chan->desc_lock, flags);
fsl_chan_xfer_ld_queue(chan); fsl_chan_xfer_ld_queue(chan);
spin_unlock_irqrestore(&chan->desc_lock, flags);
} }
/** /**
@ -964,16 +984,18 @@ static enum dma_status fsl_tx_status(struct dma_chan *dchan,
struct dma_tx_state *txstate) struct dma_tx_state *txstate)
{ {
struct fsldma_chan *chan = to_fsl_chan(dchan); struct fsldma_chan *chan = to_fsl_chan(dchan);
dma_cookie_t last_used;
dma_cookie_t last_complete; dma_cookie_t last_complete;
dma_cookie_t last_used;
unsigned long flags;
fsl_chan_ld_cleanup(chan); spin_lock_irqsave(&chan->desc_lock, flags);
last_used = dchan->cookie;
last_complete = chan->completed_cookie; last_complete = chan->completed_cookie;
last_used = dchan->cookie;
spin_unlock_irqrestore(&chan->desc_lock, flags);
dma_set_tx_state(txstate, last_complete, last_used, 0); dma_set_tx_state(txstate, last_complete, last_used, 0);
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -984,21 +1006,20 @@ static enum dma_status fsl_tx_status(struct dma_chan *dchan,
static irqreturn_t fsldma_chan_irq(int irq, void *data) static irqreturn_t fsldma_chan_irq(int irq, void *data)
{ {
struct fsldma_chan *chan = data; struct fsldma_chan *chan = data;
int update_cookie = 0;
int xfer_ld_q = 0;
u32 stat; u32 stat;
/* save and clear the status register */ /* save and clear the status register */
stat = get_sr(chan); stat = get_sr(chan);
set_sr(chan, stat); set_sr(chan, stat);
dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat); chan_dbg(chan, "irq: stat = 0x%x\n", stat);
/* check that this was really our device */
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
if (!stat) if (!stat)
return IRQ_NONE; return IRQ_NONE;
if (stat & FSL_DMA_SR_TE) if (stat & FSL_DMA_SR_TE)
dev_err(chan->dev, "Transfer Error!\n"); chan_err(chan, "Transfer Error!\n");
/* /*
* Programming Error * Programming Error
@ -1006,29 +1027,10 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* triger a PE interrupt. * triger a PE interrupt.
*/ */
if (stat & FSL_DMA_SR_PE) { if (stat & FSL_DMA_SR_PE) {
dev_dbg(chan->dev, "irq: Programming Error INT\n"); chan_dbg(chan, "irq: Programming Error INT\n");
if (get_bcr(chan) == 0) {
/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
* Now, update the completed cookie, and continue the
* next uncompleted transfer.
*/
update_cookie = 1;
xfer_ld_q = 1;
}
stat &= ~FSL_DMA_SR_PE; stat &= ~FSL_DMA_SR_PE;
} if (get_bcr(chan) != 0)
chan_err(chan, "Programming Error!\n");
/*
* If the link descriptor segment transfer finishes,
* we will recycle the used descriptor.
*/
if (stat & FSL_DMA_SR_EOSI) {
dev_dbg(chan->dev, "irq: End-of-segments INT\n");
dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
(unsigned long long)get_cdar(chan),
(unsigned long long)get_ndar(chan));
stat &= ~FSL_DMA_SR_EOSI;
update_cookie = 1;
} }
/* /*
@ -1036,10 +1038,8 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* and start the next transfer if it exist. * and start the next transfer if it exist.
*/ */
if (stat & FSL_DMA_SR_EOCDI) { if (stat & FSL_DMA_SR_EOCDI) {
dev_dbg(chan->dev, "irq: End-of-Chain link INT\n"); chan_dbg(chan, "irq: End-of-Chain link INT\n");
stat &= ~FSL_DMA_SR_EOCDI; stat &= ~FSL_DMA_SR_EOCDI;
update_cookie = 1;
xfer_ld_q = 1;
} }
/* /*
@ -1048,27 +1048,79 @@ static irqreturn_t fsldma_chan_irq(int irq, void *data)
* prepare next transfer. * prepare next transfer.
*/ */
if (stat & FSL_DMA_SR_EOLNI) { if (stat & FSL_DMA_SR_EOLNI) {
dev_dbg(chan->dev, "irq: End-of-link INT\n"); chan_dbg(chan, "irq: End-of-link INT\n");
stat &= ~FSL_DMA_SR_EOLNI; stat &= ~FSL_DMA_SR_EOLNI;
xfer_ld_q = 1;
} }
if (update_cookie) /* check that the DMA controller is really idle */
fsl_dma_update_completed_cookie(chan); if (!dma_is_idle(chan))
if (xfer_ld_q) chan_err(chan, "irq: controller not idle!\n");
fsl_chan_xfer_ld_queue(chan);
if (stat)
dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
dev_dbg(chan->dev, "irq: Exit\n"); /* check that we handled all of the bits */
if (stat)
chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
/*
* Schedule the tasklet to handle all cleanup of the current
* transaction. It will start a new transaction if there is
* one pending.
*/
tasklet_schedule(&chan->tasklet); tasklet_schedule(&chan->tasklet);
chan_dbg(chan, "irq: Exit\n");
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static void dma_do_tasklet(unsigned long data) static void dma_do_tasklet(unsigned long data)
{ {
struct fsldma_chan *chan = (struct fsldma_chan *)data; struct fsldma_chan *chan = (struct fsldma_chan *)data;
fsl_chan_ld_cleanup(chan); struct fsl_desc_sw *desc, *_desc;
LIST_HEAD(ld_cleanup);
unsigned long flags;
chan_dbg(chan, "tasklet entry\n");
spin_lock_irqsave(&chan->desc_lock, flags);
/* update the cookie if we have some descriptors to cleanup */
if (!list_empty(&chan->ld_running)) {
dma_cookie_t cookie;
desc = to_fsl_desc(chan->ld_running.prev);
cookie = desc->async_tx.cookie;
chan->completed_cookie = cookie;
chan_dbg(chan, "completed_cookie=%d\n", cookie);
}
/*
* move the descriptors to a temporary list so we can drop the lock
* during the entire cleanup operation
*/
list_splice_tail_init(&chan->ld_running, &ld_cleanup);
/* the hardware is now idle and ready for more */
chan->idle = true;
/*
* Start any pending transactions automatically
*
* In the ideal case, we keep the DMA controller busy while we go
* ahead and free the descriptors below.
*/
fsl_chan_xfer_ld_queue(chan);
spin_unlock_irqrestore(&chan->desc_lock, flags);
/* Run the callback for each descriptor, in order */
list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
/* Remove from the list of transactions */
list_del(&desc->node);
/* Run all cleanup for this descriptor */
fsldma_cleanup_descriptor(chan, desc);
}
chan_dbg(chan, "tasklet exit\n");
} }
static irqreturn_t fsldma_ctrl_irq(int irq, void *data) static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
@ -1116,7 +1168,7 @@ static void fsldma_free_irqs(struct fsldma_device *fdev)
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
chan = fdev->chan[i]; chan = fdev->chan[i];
if (chan && chan->irq != NO_IRQ) { if (chan && chan->irq != NO_IRQ) {
dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id); chan_dbg(chan, "free per-channel IRQ\n");
free_irq(chan->irq, chan); free_irq(chan->irq, chan);
} }
} }
@ -1143,19 +1195,16 @@ static int fsldma_request_irqs(struct fsldma_device *fdev)
continue; continue;
if (chan->irq == NO_IRQ) { if (chan->irq == NO_IRQ) {
dev_err(fdev->dev, "no interrupts property defined for " chan_err(chan, "interrupts property missing in device tree\n");
"DMA channel %d. Please fix your "
"device tree\n", chan->id);
ret = -ENODEV; ret = -ENODEV;
goto out_unwind; goto out_unwind;
} }
dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id); chan_dbg(chan, "request per-channel IRQ\n");
ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
"fsldma-chan", chan); "fsldma-chan", chan);
if (ret) { if (ret) {
dev_err(fdev->dev, "unable to request IRQ for DMA " chan_err(chan, "unable to request per-channel IRQ\n");
"channel %d\n", chan->id);
goto out_unwind; goto out_unwind;
} }
} }
@ -1230,6 +1279,7 @@ static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
fdev->chan[chan->id] = chan; fdev->chan[chan->id] = chan;
tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
/* Initialize the channel */ /* Initialize the channel */
dma_init(chan); dma_init(chan);
@ -1250,6 +1300,7 @@ static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
spin_lock_init(&chan->desc_lock); spin_lock_init(&chan->desc_lock);
INIT_LIST_HEAD(&chan->ld_pending); INIT_LIST_HEAD(&chan->ld_pending);
INIT_LIST_HEAD(&chan->ld_running); INIT_LIST_HEAD(&chan->ld_running);
chan->idle = true;
chan->common.device = &fdev->common; chan->common.device = &fdev->common;

View File

@ -102,8 +102,8 @@ struct fsl_desc_sw {
} __attribute__((aligned(32))); } __attribute__((aligned(32)));
struct fsldma_chan_regs { struct fsldma_chan_regs {
u32 mr; /* 0x00 - Mode Register */ u32 mr; /* 0x00 - Mode Register */
u32 sr; /* 0x04 - Status Register */ u32 sr; /* 0x04 - Status Register */
u64 cdar; /* 0x08 - Current descriptor address register */ u64 cdar; /* 0x08 - Current descriptor address register */
u64 sar; /* 0x10 - Source Address Register */ u64 sar; /* 0x10 - Source Address Register */
u64 dar; /* 0x18 - Destination Address Register */ u64 dar; /* 0x18 - Destination Address Register */
@ -135,6 +135,7 @@ struct fsldma_device {
#define FSL_DMA_CHAN_START_EXT 0x00002000 #define FSL_DMA_CHAN_START_EXT 0x00002000
struct fsldma_chan { struct fsldma_chan {
char name[8]; /* Channel name */
struct fsldma_chan_regs __iomem *regs; struct fsldma_chan_regs __iomem *regs;
dma_cookie_t completed_cookie; /* The maximum cookie completed */ dma_cookie_t completed_cookie; /* The maximum cookie completed */
spinlock_t desc_lock; /* Descriptor operation lock */ spinlock_t desc_lock; /* Descriptor operation lock */
@ -147,6 +148,7 @@ struct fsldma_chan {
int id; /* Raw id of this channel */ int id; /* Raw id of this channel */
struct tasklet_struct tasklet; struct tasklet_struct tasklet;
u32 feature; u32 feature;
bool idle; /* DMA controller is idle */
void (*toggle_ext_pause)(struct fsldma_chan *fsl_chan, int enable); void (*toggle_ext_pause)(struct fsldma_chan *fsl_chan, int enable);
void (*toggle_ext_start)(struct fsldma_chan *fsl_chan, int enable); void (*toggle_ext_start)(struct fsldma_chan *fsl_chan, int enable);

724
drivers/dma/mxs-dma.c Normal file
View File

@ -0,0 +1,724 @@
/*
* Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
*
* Refer to drivers/dma/imx-sdma.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <asm/irq.h>
#include <mach/mxs.h>
#include <mach/dma.h>
#include <mach/common.h>
/*
* NOTE: The term "PIO" throughout the mxs-dma implementation means
* PIO mode of mxs apbh-dma and apbx-dma. With this working mode,
* dma can program the controller registers of peripheral devices.
*/
#define MXS_DMA_APBH 0
#define MXS_DMA_APBX 1
#define dma_is_apbh() (mxs_dma->dev_id == MXS_DMA_APBH)
#define APBH_VERSION_LATEST 3
#define apbh_is_old() (mxs_dma->version < APBH_VERSION_LATEST)
#define HW_APBHX_CTRL0 0x000
#define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
#define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
#define BP_APBH_CTRL0_CLKGATE_CHANNEL 8
#define BP_APBH_CTRL0_RESET_CHANNEL 16
#define HW_APBHX_CTRL1 0x010
#define HW_APBHX_CTRL2 0x020
#define HW_APBHX_CHANNEL_CTRL 0x030
#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
#define HW_APBH_VERSION (cpu_is_mx23() ? 0x3f0 : 0x800)
#define HW_APBX_VERSION 0x800
#define BP_APBHX_VERSION_MAJOR 24
#define HW_APBHX_CHn_NXTCMDAR(n) \
(((dma_is_apbh() && apbh_is_old()) ? 0x050 : 0x110) + (n) * 0x70)
#define HW_APBHX_CHn_SEMA(n) \
(((dma_is_apbh() && apbh_is_old()) ? 0x080 : 0x140) + (n) * 0x70)
/*
* ccw bits definitions
*
* COMMAND: 0..1 (2)
* CHAIN: 2 (1)
* IRQ: 3 (1)
* NAND_LOCK: 4 (1) - not implemented
* NAND_WAIT4READY: 5 (1) - not implemented
* DEC_SEM: 6 (1)
* WAIT4END: 7 (1)
* HALT_ON_TERMINATE: 8 (1)
* TERMINATE_FLUSH: 9 (1)
* RESERVED: 10..11 (2)
* PIO_NUM: 12..15 (4)
*/
#define BP_CCW_COMMAND 0
#define BM_CCW_COMMAND (3 << 0)
#define CCW_CHAIN (1 << 2)
#define CCW_IRQ (1 << 3)
#define CCW_DEC_SEM (1 << 6)
#define CCW_WAIT4END (1 << 7)
#define CCW_HALT_ON_TERM (1 << 8)
#define CCW_TERM_FLUSH (1 << 9)
#define BP_CCW_PIO_NUM 12
#define BM_CCW_PIO_NUM (0xf << 12)
#define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field)
#define MXS_DMA_CMD_NO_XFER 0
#define MXS_DMA_CMD_WRITE 1
#define MXS_DMA_CMD_READ 2
#define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */
struct mxs_dma_ccw {
u32 next;
u16 bits;
u16 xfer_bytes;
#define MAX_XFER_BYTES 0xff00
u32 bufaddr;
#define MXS_PIO_WORDS 16
u32 pio_words[MXS_PIO_WORDS];
};
#define NUM_CCW (int)(PAGE_SIZE / sizeof(struct mxs_dma_ccw))
struct mxs_dma_chan {
struct mxs_dma_engine *mxs_dma;
struct dma_chan chan;
struct dma_async_tx_descriptor desc;
struct tasklet_struct tasklet;
int chan_irq;
struct mxs_dma_ccw *ccw;
dma_addr_t ccw_phys;
dma_cookie_t last_completed;
enum dma_status status;
unsigned int flags;
#define MXS_DMA_SG_LOOP (1 << 0)
};
#define MXS_DMA_CHANNELS 16
#define MXS_DMA_CHANNELS_MASK 0xffff
struct mxs_dma_engine {
int dev_id;
unsigned int version;
void __iomem *base;
struct clk *clk;
struct dma_device dma_device;
struct device_dma_parameters dma_parms;
struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS];
};
static void mxs_dma_reset_chan(struct mxs_dma_chan *mxs_chan)
{
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_id = mxs_chan->chan.chan_id;
if (dma_is_apbh() && apbh_is_old())
writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
else
writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + MXS_SET_ADDR);
}
static void mxs_dma_enable_chan(struct mxs_dma_chan *mxs_chan)
{
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_id = mxs_chan->chan.chan_id;
/* set cmd_addr up */
writel(mxs_chan->ccw_phys,
mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(chan_id));
/* enable apbh channel clock */
if (dma_is_apbh()) {
if (apbh_is_old())
writel(1 << (chan_id + BP_APBH_CTRL0_CLKGATE_CHANNEL),
mxs_dma->base + HW_APBHX_CTRL0 + MXS_CLR_ADDR);
else
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_CLR_ADDR);
}
/* write 1 to SEMA to kick off the channel */
writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(chan_id));
}
static void mxs_dma_disable_chan(struct mxs_dma_chan *mxs_chan)
{
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_id = mxs_chan->chan.chan_id;
/* disable apbh channel clock */
if (dma_is_apbh()) {
if (apbh_is_old())
writel(1 << (chan_id + BP_APBH_CTRL0_CLKGATE_CHANNEL),
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
else
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
}
mxs_chan->status = DMA_SUCCESS;
}
static void mxs_dma_pause_chan(struct mxs_dma_chan *mxs_chan)
{
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_id = mxs_chan->chan.chan_id;
/* freeze the channel */
if (dma_is_apbh() && apbh_is_old())
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
else
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + MXS_SET_ADDR);
mxs_chan->status = DMA_PAUSED;
}
static void mxs_dma_resume_chan(struct mxs_dma_chan *mxs_chan)
{
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_id = mxs_chan->chan.chan_id;
/* unfreeze the channel */
if (dma_is_apbh() && apbh_is_old())
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_CLR_ADDR);
else
writel(1 << chan_id,
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + MXS_CLR_ADDR);
mxs_chan->status = DMA_IN_PROGRESS;
}
static dma_cookie_t mxs_dma_assign_cookie(struct mxs_dma_chan *mxs_chan)
{
dma_cookie_t cookie = mxs_chan->chan.cookie;
if (++cookie < 0)
cookie = 1;
mxs_chan->chan.cookie = cookie;
mxs_chan->desc.cookie = cookie;
return cookie;
}
static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
{
return container_of(chan, struct mxs_dma_chan, chan);
}
static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(tx->chan);
mxs_dma_enable_chan(mxs_chan);
return mxs_dma_assign_cookie(mxs_chan);
}
static void mxs_dma_tasklet(unsigned long data)
{
struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
if (mxs_chan->desc.callback)
mxs_chan->desc.callback(mxs_chan->desc.callback_param);
}
static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
{
struct mxs_dma_engine *mxs_dma = dev_id;
u32 stat1, stat2;
/* completion status */
stat1 = readl(mxs_dma->base + HW_APBHX_CTRL1);
stat1 &= MXS_DMA_CHANNELS_MASK;
writel(stat1, mxs_dma->base + HW_APBHX_CTRL1 + MXS_CLR_ADDR);
/* error status */
stat2 = readl(mxs_dma->base + HW_APBHX_CTRL2);
writel(stat2, mxs_dma->base + HW_APBHX_CTRL2 + MXS_CLR_ADDR);
/*
* When both completion and error of termination bits set at the
* same time, we do not take it as an error. IOW, it only becomes
* an error we need to handler here in case of ether it's (1) an bus
* error or (2) a termination error with no completion.
*/
stat2 = ((stat2 >> MXS_DMA_CHANNELS) & stat2) | /* (1) */
(~(stat2 >> MXS_DMA_CHANNELS) & stat2 & ~stat1); /* (2) */
/* combine error and completion status for checking */
stat1 = (stat2 << MXS_DMA_CHANNELS) | stat1;
while (stat1) {
int channel = fls(stat1) - 1;
struct mxs_dma_chan *mxs_chan =
&mxs_dma->mxs_chans[channel % MXS_DMA_CHANNELS];
if (channel >= MXS_DMA_CHANNELS) {
dev_dbg(mxs_dma->dma_device.dev,
"%s: error in channel %d\n", __func__,
channel - MXS_DMA_CHANNELS);
mxs_chan->status = DMA_ERROR;
mxs_dma_reset_chan(mxs_chan);
} else {
if (mxs_chan->flags & MXS_DMA_SG_LOOP)
mxs_chan->status = DMA_IN_PROGRESS;
else
mxs_chan->status = DMA_SUCCESS;
}
stat1 &= ~(1 << channel);
if (mxs_chan->status == DMA_SUCCESS)
mxs_chan->last_completed = mxs_chan->desc.cookie;
/* schedule tasklet on this channel */
tasklet_schedule(&mxs_chan->tasklet);
}
return IRQ_HANDLED;
}
static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
struct mxs_dma_data *data = chan->private;
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int ret;
if (!data)
return -EINVAL;
mxs_chan->chan_irq = data->chan_irq;
mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev, PAGE_SIZE,
&mxs_chan->ccw_phys, GFP_KERNEL);
if (!mxs_chan->ccw) {
ret = -ENOMEM;
goto err_alloc;
}
memset(mxs_chan->ccw, 0, PAGE_SIZE);
ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
0, "mxs-dma", mxs_dma);
if (ret)
goto err_irq;
ret = clk_enable(mxs_dma->clk);
if (ret)
goto err_clk;
mxs_dma_reset_chan(mxs_chan);
dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
/* the descriptor is ready */
async_tx_ack(&mxs_chan->desc);
return 0;
err_clk:
free_irq(mxs_chan->chan_irq, mxs_dma);
err_irq:
dma_free_coherent(mxs_dma->dma_device.dev, PAGE_SIZE,
mxs_chan->ccw, mxs_chan->ccw_phys);
err_alloc:
return ret;
}
static void mxs_dma_free_chan_resources(struct dma_chan *chan)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
mxs_dma_disable_chan(mxs_chan);
free_irq(mxs_chan->chan_irq, mxs_dma);
dma_free_coherent(mxs_dma->dma_device.dev, PAGE_SIZE,
mxs_chan->ccw, mxs_chan->ccw_phys);
clk_disable(mxs_dma->clk);
}
static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long append)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
struct mxs_dma_ccw *ccw;
struct scatterlist *sg;
int i, j;
u32 *pio;
static int idx;
if (mxs_chan->status == DMA_IN_PROGRESS && !append)
return NULL;
if (sg_len + (append ? idx : 0) > NUM_CCW) {
dev_err(mxs_dma->dma_device.dev,
"maximum number of sg exceeded: %d > %d\n",
sg_len, NUM_CCW);
goto err_out;
}
mxs_chan->status = DMA_IN_PROGRESS;
mxs_chan->flags = 0;
/*
* If the sg is prepared with append flag set, the sg
* will be appended to the last prepared sg.
*/
if (append) {
BUG_ON(idx < 1);
ccw = &mxs_chan->ccw[idx - 1];
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
ccw->bits |= CCW_CHAIN;
ccw->bits &= ~CCW_IRQ;
ccw->bits &= ~CCW_DEC_SEM;
ccw->bits &= ~CCW_WAIT4END;
} else {
idx = 0;
}
if (direction == DMA_NONE) {
ccw = &mxs_chan->ccw[idx++];
pio = (u32 *) sgl;
for (j = 0; j < sg_len;)
ccw->pio_words[j++] = *pio++;
ccw->bits = 0;
ccw->bits |= CCW_IRQ;
ccw->bits |= CCW_DEC_SEM;
ccw->bits |= CCW_WAIT4END;
ccw->bits |= CCW_HALT_ON_TERM;
ccw->bits |= CCW_TERM_FLUSH;
ccw->bits |= BF_CCW(sg_len, PIO_NUM);
ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
} else {
for_each_sg(sgl, sg, sg_len, i) {
if (sg->length > MAX_XFER_BYTES) {
dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
sg->length, MAX_XFER_BYTES);
goto err_out;
}
ccw = &mxs_chan->ccw[idx++];
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
ccw->bufaddr = sg->dma_address;
ccw->xfer_bytes = sg->length;
ccw->bits = 0;
ccw->bits |= CCW_CHAIN;
ccw->bits |= CCW_HALT_ON_TERM;
ccw->bits |= CCW_TERM_FLUSH;
ccw->bits |= BF_CCW(direction == DMA_FROM_DEVICE ?
MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
COMMAND);
if (i + 1 == sg_len) {
ccw->bits &= ~CCW_CHAIN;
ccw->bits |= CCW_IRQ;
ccw->bits |= CCW_DEC_SEM;
ccw->bits |= CCW_WAIT4END;
}
}
}
return &mxs_chan->desc;
err_out:
mxs_chan->status = DMA_ERROR;
return NULL;
}
static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_data_direction direction)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int num_periods = buf_len / period_len;
int i = 0, buf = 0;
if (mxs_chan->status == DMA_IN_PROGRESS)
return NULL;
mxs_chan->status = DMA_IN_PROGRESS;
mxs_chan->flags |= MXS_DMA_SG_LOOP;
if (num_periods > NUM_CCW) {
dev_err(mxs_dma->dma_device.dev,
"maximum number of sg exceeded: %d > %d\n",
num_periods, NUM_CCW);
goto err_out;
}
if (period_len > MAX_XFER_BYTES) {
dev_err(mxs_dma->dma_device.dev,
"maximum period size exceeded: %d > %d\n",
period_len, MAX_XFER_BYTES);
goto err_out;
}
while (buf < buf_len) {
struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
if (i + 1 == num_periods)
ccw->next = mxs_chan->ccw_phys;
else
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
ccw->bufaddr = dma_addr;
ccw->xfer_bytes = period_len;
ccw->bits = 0;
ccw->bits |= CCW_CHAIN;
ccw->bits |= CCW_IRQ;
ccw->bits |= CCW_HALT_ON_TERM;
ccw->bits |= CCW_TERM_FLUSH;
ccw->bits |= BF_CCW(direction == DMA_FROM_DEVICE ?
MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
dma_addr += period_len;
buf += period_len;
i++;
}
return &mxs_chan->desc;
err_out:
mxs_chan->status = DMA_ERROR;
return NULL;
}
static int mxs_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
int ret = 0;
switch (cmd) {
case DMA_TERMINATE_ALL:
mxs_dma_disable_chan(mxs_chan);
break;
case DMA_PAUSE:
mxs_dma_pause_chan(mxs_chan);
break;
case DMA_RESUME:
mxs_dma_resume_chan(mxs_chan);
break;
default:
ret = -ENOSYS;
}
return ret;
}
static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
dma_cookie_t last_used;
last_used = chan->cookie;
dma_set_tx_state(txstate, mxs_chan->last_completed, last_used, 0);
return mxs_chan->status;
}
static void mxs_dma_issue_pending(struct dma_chan *chan)
{
/*
* Nothing to do. We only have a single descriptor.
*/
}
static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
{
int ret;
ret = clk_enable(mxs_dma->clk);
if (ret)
goto err_out;
ret = mxs_reset_block(mxs_dma->base);
if (ret)
goto err_out;
/* only major version matters */
mxs_dma->version = readl(mxs_dma->base +
((mxs_dma->dev_id == MXS_DMA_APBX) ?
HW_APBX_VERSION : HW_APBH_VERSION)) >>
BP_APBHX_VERSION_MAJOR;
/* enable apbh burst */
if (dma_is_apbh()) {
writel(BM_APBH_CTRL0_APB_BURST_EN,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
writel(BM_APBH_CTRL0_APB_BURST8_EN,
mxs_dma->base + HW_APBHX_CTRL0 + MXS_SET_ADDR);
}
/* enable irq for all the channels */
writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
mxs_dma->base + HW_APBHX_CTRL1 + MXS_SET_ADDR);
clk_disable(mxs_dma->clk);
return 0;
err_out:
return ret;
}
static int __init mxs_dma_probe(struct platform_device *pdev)
{
const struct platform_device_id *id_entry =
platform_get_device_id(pdev);
struct mxs_dma_engine *mxs_dma;
struct resource *iores;
int ret, i;
mxs_dma = kzalloc(sizeof(*mxs_dma), GFP_KERNEL);
if (!mxs_dma)
return -ENOMEM;
mxs_dma->dev_id = id_entry->driver_data;
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!request_mem_region(iores->start, resource_size(iores),
pdev->name)) {
ret = -EBUSY;
goto err_request_region;
}
mxs_dma->base = ioremap(iores->start, resource_size(iores));
if (!mxs_dma->base) {
ret = -ENOMEM;
goto err_ioremap;
}
mxs_dma->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(mxs_dma->clk)) {
ret = PTR_ERR(mxs_dma->clk);
goto err_clk;
}
dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
/* Initialize channel parameters */
for (i = 0; i < MXS_DMA_CHANNELS; i++) {
struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
mxs_chan->mxs_dma = mxs_dma;
mxs_chan->chan.device = &mxs_dma->dma_device;
tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
(unsigned long) mxs_chan);
/* Add the channel to mxs_chan list */
list_add_tail(&mxs_chan->chan.device_node,
&mxs_dma->dma_device.channels);
}
ret = mxs_dma_init(mxs_dma);
if (ret)
goto err_init;
mxs_dma->dma_device.dev = &pdev->dev;
/* mxs_dma gets 65535 bytes maximum sg size */
mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
mxs_dma->dma_device.device_control = mxs_dma_control;
mxs_dma->dma_device.device_issue_pending = mxs_dma_issue_pending;
ret = dma_async_device_register(&mxs_dma->dma_device);
if (ret) {
dev_err(mxs_dma->dma_device.dev, "unable to register\n");
goto err_init;
}
dev_info(mxs_dma->dma_device.dev, "initialized\n");
return 0;
err_init:
clk_put(mxs_dma->clk);
err_clk:
iounmap(mxs_dma->base);
err_ioremap:
release_mem_region(iores->start, resource_size(iores));
err_request_region:
kfree(mxs_dma);
return ret;
}
static struct platform_device_id mxs_dma_type[] = {
{
.name = "mxs-dma-apbh",
.driver_data = MXS_DMA_APBH,
}, {
.name = "mxs-dma-apbx",
.driver_data = MXS_DMA_APBX,
}
};
static struct platform_driver mxs_dma_driver = {
.driver = {
.name = "mxs-dma",
},
.id_table = mxs_dma_type,
};
static int __init mxs_dma_module_init(void)
{
return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
}
subsys_initcall(mxs_dma_module_init);

View File

@ -82,7 +82,7 @@ struct pch_dma_regs {
u32 dma_sts1; u32 dma_sts1;
u32 reserved2; u32 reserved2;
u32 reserved3; u32 reserved3;
struct pch_dma_desc_regs desc[0]; struct pch_dma_desc_regs desc[MAX_CHAN_NR];
}; };
struct pch_dma_desc { struct pch_dma_desc {
@ -124,7 +124,7 @@ struct pch_dma {
struct pci_pool *pool; struct pci_pool *pool;
struct pch_dma_regs regs; struct pch_dma_regs regs;
struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR]; struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
struct pch_dma_chan channels[0]; struct pch_dma_chan channels[MAX_CHAN_NR];
}; };
#define PCH_DMA_CTL0 0x00 #define PCH_DMA_CTL0 0x00
@ -366,7 +366,7 @@ static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan); struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
dma_cookie_t cookie; dma_cookie_t cookie;
spin_lock_bh(&pd_chan->lock); spin_lock(&pd_chan->lock);
cookie = pdc_assign_cookie(pd_chan, desc); cookie = pdc_assign_cookie(pd_chan, desc);
if (list_empty(&pd_chan->active_list)) { if (list_empty(&pd_chan->active_list)) {
@ -376,7 +376,7 @@ static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
list_add_tail(&desc->desc_node, &pd_chan->queue); list_add_tail(&desc->desc_node, &pd_chan->queue);
} }
spin_unlock_bh(&pd_chan->lock); spin_unlock(&pd_chan->lock);
return 0; return 0;
} }
@ -386,7 +386,7 @@ static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
struct pch_dma *pd = to_pd(chan->device); struct pch_dma *pd = to_pd(chan->device);
dma_addr_t addr; dma_addr_t addr;
desc = pci_pool_alloc(pd->pool, GFP_KERNEL, &addr); desc = pci_pool_alloc(pd->pool, flags, &addr);
if (desc) { if (desc) {
memset(desc, 0, sizeof(struct pch_dma_desc)); memset(desc, 0, sizeof(struct pch_dma_desc));
INIT_LIST_HEAD(&desc->tx_list); INIT_LIST_HEAD(&desc->tx_list);
@ -405,7 +405,7 @@ static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
struct pch_dma_desc *ret = NULL; struct pch_dma_desc *ret = NULL;
int i; int i;
spin_lock_bh(&pd_chan->lock); spin_lock(&pd_chan->lock);
list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) { list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
i++; i++;
if (async_tx_test_ack(&desc->txd)) { if (async_tx_test_ack(&desc->txd)) {
@ -415,15 +415,15 @@ static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
} }
dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc); dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
} }
spin_unlock_bh(&pd_chan->lock); spin_unlock(&pd_chan->lock);
dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i); dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
if (!ret) { if (!ret) {
ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO); ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
if (ret) { if (ret) {
spin_lock_bh(&pd_chan->lock); spin_lock(&pd_chan->lock);
pd_chan->descs_allocated++; pd_chan->descs_allocated++;
spin_unlock_bh(&pd_chan->lock); spin_unlock(&pd_chan->lock);
} else { } else {
dev_err(chan2dev(&pd_chan->chan), dev_err(chan2dev(&pd_chan->chan),
"failed to alloc desc\n"); "failed to alloc desc\n");
@ -437,10 +437,10 @@ static void pdc_desc_put(struct pch_dma_chan *pd_chan,
struct pch_dma_desc *desc) struct pch_dma_desc *desc)
{ {
if (desc) { if (desc) {
spin_lock_bh(&pd_chan->lock); spin_lock(&pd_chan->lock);
list_splice_init(&desc->tx_list, &pd_chan->free_list); list_splice_init(&desc->tx_list, &pd_chan->free_list);
list_add(&desc->desc_node, &pd_chan->free_list); list_add(&desc->desc_node, &pd_chan->free_list);
spin_unlock_bh(&pd_chan->lock); spin_unlock(&pd_chan->lock);
} }
} }
@ -530,9 +530,9 @@ static void pd_issue_pending(struct dma_chan *chan)
struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma_chan *pd_chan = to_pd_chan(chan);
if (pdc_is_idle(pd_chan)) { if (pdc_is_idle(pd_chan)) {
spin_lock_bh(&pd_chan->lock); spin_lock(&pd_chan->lock);
pdc_advance_work(pd_chan); pdc_advance_work(pd_chan);
spin_unlock_bh(&pd_chan->lock); spin_unlock(&pd_chan->lock);
} }
} }
@ -592,7 +592,6 @@ static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
goto err_desc_get; goto err_desc_get;
} }
if (!first) { if (!first) {
first = desc; first = desc;
} else { } else {
@ -641,13 +640,13 @@ static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
spin_unlock_bh(&pd_chan->lock); spin_unlock_bh(&pd_chan->lock);
return 0; return 0;
} }
static void pdc_tasklet(unsigned long data) static void pdc_tasklet(unsigned long data)
{ {
struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data; struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
unsigned long flags;
if (!pdc_is_idle(pd_chan)) { if (!pdc_is_idle(pd_chan)) {
dev_err(chan2dev(&pd_chan->chan), dev_err(chan2dev(&pd_chan->chan),
@ -655,12 +654,12 @@ static void pdc_tasklet(unsigned long data)
return; return;
} }
spin_lock_bh(&pd_chan->lock); spin_lock_irqsave(&pd_chan->lock, flags);
if (test_and_clear_bit(0, &pd_chan->err_status)) if (test_and_clear_bit(0, &pd_chan->err_status))
pdc_handle_error(pd_chan); pdc_handle_error(pd_chan);
else else
pdc_advance_work(pd_chan); pdc_advance_work(pd_chan);
spin_unlock_bh(&pd_chan->lock); spin_unlock_irqrestore(&pd_chan->lock, flags);
} }
static irqreturn_t pd_irq(int irq, void *devid) static irqreturn_t pd_irq(int irq, void *devid)
@ -694,6 +693,7 @@ static irqreturn_t pd_irq(int irq, void *devid)
return ret; return ret;
} }
#ifdef CONFIG_PM
static void pch_dma_save_regs(struct pch_dma *pd) static void pch_dma_save_regs(struct pch_dma *pd)
{ {
struct pch_dma_chan *pd_chan; struct pch_dma_chan *pd_chan;
@ -771,6 +771,7 @@ static int pch_dma_resume(struct pci_dev *pdev)
return 0; return 0;
} }
#endif
static int __devinit pch_dma_probe(struct pci_dev *pdev, static int __devinit pch_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id) const struct pci_device_id *id)

File diff suppressed because it is too large Load Diff

View File

@ -125,13 +125,15 @@ void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
static int d40_phy_fill_lli(struct d40_phy_lli *lli, static int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data, dma_addr_t data,
u32 data_size, u32 data_size,
int psize,
dma_addr_t next_lli, dma_addr_t next_lli,
u32 reg_cfg, u32 reg_cfg,
bool term_int, struct stedma40_half_channel_info *info,
u32 data_width, unsigned int flags)
bool is_device)
{ {
bool addr_inc = flags & LLI_ADDR_INC;
bool term_int = flags & LLI_TERM_INT;
unsigned int data_width = info->data_width;
int psize = info->psize;
int num_elems; int num_elems;
if (psize == STEDMA40_PSIZE_PHY_1) if (psize == STEDMA40_PSIZE_PHY_1)
@ -154,7 +156,7 @@ static int d40_phy_fill_lli(struct d40_phy_lli *lli,
* Distance to next element sized entry. * Distance to next element sized entry.
* Usually the size of the element unless you want gaps. * Usually the size of the element unless you want gaps.
*/ */
if (!is_device) if (addr_inc)
lli->reg_elt |= (0x1 << data_width) << lli->reg_elt |= (0x1 << data_width) <<
D40_SREG_ELEM_PHY_EIDX_POS; D40_SREG_ELEM_PHY_EIDX_POS;
@ -198,47 +200,51 @@ static int d40_seg_size(int size, int data_width1, int data_width2)
return seg_max; return seg_max;
} }
struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli, static struct d40_phy_lli *
dma_addr_t addr, d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size,
u32 size, dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg,
int psize, struct stedma40_half_channel_info *info,
dma_addr_t lli_phys, struct stedma40_half_channel_info *otherinfo,
u32 reg_cfg, unsigned long flags)
bool term_int,
u32 data_width1,
u32 data_width2,
bool is_device)
{ {
bool lastlink = flags & LLI_LAST_LINK;
bool addr_inc = flags & LLI_ADDR_INC;
bool term_int = flags & LLI_TERM_INT;
bool cyclic = flags & LLI_CYCLIC;
int err; int err;
dma_addr_t next = lli_phys; dma_addr_t next = lli_phys;
int size_rest = size; int size_rest = size;
int size_seg = 0; int size_seg = 0;
/*
* This piece may be split up based on d40_seg_size(); we only want the
* term int on the last part.
*/
if (term_int)
flags &= ~LLI_TERM_INT;
do { do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2); size_seg = d40_seg_size(size_rest, info->data_width,
otherinfo->data_width);
size_rest -= size_seg; size_rest -= size_seg;
if (term_int && size_rest == 0) if (size_rest == 0 && term_int)
next = 0; flags |= LLI_TERM_INT;
if (size_rest == 0 && lastlink)
next = cyclic ? first_phys : 0;
else else
next = ALIGN(next + sizeof(struct d40_phy_lli), next = ALIGN(next + sizeof(struct d40_phy_lli),
D40_LLI_ALIGN); D40_LLI_ALIGN);
err = d40_phy_fill_lli(lli, err = d40_phy_fill_lli(lli, addr, size_seg, next,
addr, reg_cfg, info, flags);
size_seg,
psize,
next,
reg_cfg,
!next,
data_width1,
is_device);
if (err) if (err)
goto err; goto err;
lli++; lli++;
if (!is_device) if (addr_inc)
addr += size_seg; addr += size_seg;
} while (size_rest); } while (size_rest);
@ -254,39 +260,35 @@ int d40_phy_sg_to_lli(struct scatterlist *sg,
struct d40_phy_lli *lli_sg, struct d40_phy_lli *lli_sg,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width1, struct stedma40_half_channel_info *info,
u32 data_width2, struct stedma40_half_channel_info *otherinfo,
int psize) unsigned long flags)
{ {
int total_size = 0; int total_size = 0;
int i; int i;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
dma_addr_t dst;
struct d40_phy_lli *lli = lli_sg; struct d40_phy_lli *lli = lli_sg;
dma_addr_t l_phys = lli_phys; dma_addr_t l_phys = lli_phys;
if (!target)
flags |= LLI_ADDR_INC;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
dma_addr_t sg_addr = sg_dma_address(current_sg);
unsigned int len = sg_dma_len(current_sg);
dma_addr_t dst = target ?: sg_addr;
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
if (target) if (i == sg_len - 1)
dst = target; flags |= LLI_TERM_INT | LLI_LAST_LINK;
else
dst = sg_phys(current_sg);
l_phys = ALIGN(lli_phys + (lli - lli_sg) * l_phys = ALIGN(lli_phys + (lli - lli_sg) *
sizeof(struct d40_phy_lli), D40_LLI_ALIGN); sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
lli = d40_phy_buf_to_lli(lli, lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys,
dst, reg_cfg, info, otherinfo, flags);
sg_dma_len(current_sg),
psize,
l_phys,
reg_cfg,
sg_len - 1 == i,
data_width1,
data_width2,
target == dst);
if (lli == NULL) if (lli == NULL)
return -EINVAL; return -EINVAL;
} }
@ -295,45 +297,22 @@ int d40_phy_sg_to_lli(struct scatterlist *sg,
} }
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src)
{
writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
}
/* DMA logical lli operations */ /* DMA logical lli operations */
static void d40_log_lli_link(struct d40_log_lli *lli_dst, static void d40_log_lli_link(struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int next) int next, unsigned int flags)
{ {
bool interrupt = flags & LLI_TERM_INT;
u32 slos = 0; u32 slos = 0;
u32 dlos = 0; u32 dlos = 0;
if (next != -EINVAL) { if (next != -EINVAL) {
slos = next * 2; slos = next * 2;
dlos = next * 2 + 1; dlos = next * 2 + 1;
} else { }
if (interrupt) {
lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
} }
@ -348,9 +327,9 @@ static void d40_log_lli_link(struct d40_log_lli *lli_dst,
void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int next) int next, unsigned int flags)
{ {
d40_log_lli_link(lli_dst, lli_src, next); d40_log_lli_link(lli_dst, lli_src, next, flags);
writel(lli_src->lcsp02, &lcpa[0].lcsp0); writel(lli_src->lcsp02, &lcpa[0].lcsp0);
writel(lli_src->lcsp13, &lcpa[0].lcsp1); writel(lli_src->lcsp13, &lcpa[0].lcsp1);
@ -361,9 +340,9 @@ void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
void d40_log_lli_lcla_write(struct d40_log_lli *lcla, void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int next) int next, unsigned int flags)
{ {
d40_log_lli_link(lli_dst, lli_src, next); d40_log_lli_link(lli_dst, lli_src, next, flags);
writel(lli_src->lcsp02, &lcla[0].lcsp02); writel(lli_src->lcsp02, &lcla[0].lcsp02);
writel(lli_src->lcsp13, &lcla[0].lcsp13); writel(lli_src->lcsp13, &lcla[0].lcsp13);
@ -375,8 +354,10 @@ static void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size, dma_addr_t data, u32 data_size,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width,
bool addr_inc) unsigned int flags)
{ {
bool addr_inc = flags & LLI_ADDR_INC;
lli->lcsp13 = reg_cfg; lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */ /* The number of elements to transfer */
@ -395,67 +376,15 @@ static void d40_log_fill_lli(struct d40_log_lli *lli,
} }
int d40_log_sg_to_dev(struct scatterlist *sg, static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
dma_addr_t dev_addr)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
struct d40_log_lli *lli_src = lli->src;
struct d40_log_lli *lli_dst = lli->dst;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
if (direction == DMA_TO_DEVICE) {
lli_src =
d40_log_buf_to_lli(lli_src,
sg_phys(current_sg),
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
true);
lli_dst =
d40_log_buf_to_lli(lli_dst,
dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
false);
} else {
lli_dst =
d40_log_buf_to_lli(lli_dst,
sg_phys(current_sg),
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
true);
lli_src =
d40_log_buf_to_lli(lli_src,
dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
false);
}
}
return total_size;
}
struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t addr, dma_addr_t addr,
int size, int size,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width1, u32 data_width1,
u32 data_width2, u32 data_width2,
bool addr_inc) unsigned int flags)
{ {
bool addr_inc = flags & LLI_ADDR_INC;
struct d40_log_lli *lli = lli_sg; struct d40_log_lli *lli = lli_sg;
int size_rest = size; int size_rest = size;
int size_seg = 0; int size_seg = 0;
@ -468,7 +397,7 @@ struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
addr, addr,
size_seg, size_seg,
lcsp13, data_width1, lcsp13, data_width1,
addr_inc); flags);
if (addr_inc) if (addr_inc)
addr += size_seg; addr += size_seg;
lli++; lli++;
@ -479,6 +408,7 @@ struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
int d40_log_sg_to_lli(struct scatterlist *sg, int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
dma_addr_t dev_addr,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width1, u32 data_width2) u32 data_width1, u32 data_width2)
@ -487,14 +417,24 @@ int d40_log_sg_to_lli(struct scatterlist *sg,
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
struct d40_log_lli *lli = lli_sg; struct d40_log_lli *lli = lli_sg;
unsigned long flags = 0;
if (!dev_addr)
flags |= LLI_ADDR_INC;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
dma_addr_t sg_addr = sg_dma_address(current_sg);
unsigned int len = sg_dma_len(current_sg);
dma_addr_t addr = dev_addr ?: sg_addr;
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
lli = d40_log_buf_to_lli(lli,
sg_phys(current_sg), lli = d40_log_buf_to_lli(lli, addr, len,
sg_dma_len(current_sg),
lcsp13, lcsp13,
data_width1, data_width2, true); data_width1,
data_width2,
flags);
} }
return total_size; return total_size;
} }

View File

@ -163,6 +163,22 @@
#define D40_DREG_LCEIS1 0x0B4 #define D40_DREG_LCEIS1 0x0B4
#define D40_DREG_LCEIS2 0x0B8 #define D40_DREG_LCEIS2 0x0B8
#define D40_DREG_LCEIS3 0x0BC #define D40_DREG_LCEIS3 0x0BC
#define D40_DREG_PSEG1 0x110
#define D40_DREG_PSEG2 0x114
#define D40_DREG_PSEG3 0x118
#define D40_DREG_PSEG4 0x11C
#define D40_DREG_PCEG1 0x120
#define D40_DREG_PCEG2 0x124
#define D40_DREG_PCEG3 0x128
#define D40_DREG_PCEG4 0x12C
#define D40_DREG_RSEG1 0x130
#define D40_DREG_RSEG2 0x134
#define D40_DREG_RSEG3 0x138
#define D40_DREG_RSEG4 0x13C
#define D40_DREG_RCEG1 0x140
#define D40_DREG_RCEG2 0x144
#define D40_DREG_RCEG3 0x148
#define D40_DREG_RCEG4 0x14C
#define D40_DREG_STFU 0xFC8 #define D40_DREG_STFU 0xFC8
#define D40_DREG_ICFG 0xFCC #define D40_DREG_ICFG 0xFCC
#define D40_DREG_PERIPHID0 0xFE0 #define D40_DREG_PERIPHID0 0xFE0
@ -277,6 +293,13 @@ struct d40_def_lcsp {
/* Physical channels */ /* Physical channels */
enum d40_lli_flags {
LLI_ADDR_INC = 1 << 0,
LLI_TERM_INT = 1 << 1,
LLI_CYCLIC = 1 << 2,
LLI_LAST_LINK = 1 << 3,
};
void d40_phy_cfg(struct stedma40_chan_cfg *cfg, void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *src_cfg,
u32 *dst_cfg, u32 *dst_cfg,
@ -292,46 +315,15 @@ int d40_phy_sg_to_lli(struct scatterlist *sg,
struct d40_phy_lli *lli, struct d40_phy_lli *lli,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width1, struct stedma40_half_channel_info *info,
u32 data_width2, struct stedma40_half_channel_info *otherinfo,
int psize); unsigned long flags);
struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width1,
u32 data_width2,
bool is_device);
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src);
/* Logical channels */ /* Logical channels */
struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t addr,
int size,
u32 lcsp13, /* src or dst*/
u32 data_width1, u32 data_width2,
bool addr_inc);
int d40_log_sg_to_dev(struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
dma_addr_t dev_addr);
int d40_log_sg_to_lli(struct scatterlist *sg, int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
dma_addr_t dev_addr,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width1, u32 data_width2); u32 data_width1, u32 data_width2);
@ -339,11 +331,11 @@ int d40_log_sg_to_lli(struct scatterlist *sg,
void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int next); int next, unsigned int flags);
void d40_log_lli_lcla_write(struct d40_log_lli *lcla, void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src, struct d40_log_lli *lli_src,
int next); int next, unsigned int flags);
#endif /* STE_DMA40_LLI_H */ #endif /* STE_DMA40_LLI_H */

View File

@ -16,9 +16,18 @@
/** /**
* struct dw_dma_platform_data - Controller configuration parameters * struct dw_dma_platform_data - Controller configuration parameters
* @nr_channels: Number of channels supported by hardware (max 8) * @nr_channels: Number of channels supported by hardware (max 8)
* @is_private: The device channels should be marked as private and not for
* by the general purpose DMA channel allocator.
*/ */
struct dw_dma_platform_data { struct dw_dma_platform_data {
unsigned int nr_channels; unsigned int nr_channels;
bool is_private;
#define CHAN_ALLOCATION_ASCENDING 0 /* zero to seven */
#define CHAN_ALLOCATION_DESCENDING 1 /* seven to zero */
unsigned char chan_allocation_order;
#define CHAN_PRIORITY_ASCENDING 0 /* chan0 highest */
#define CHAN_PRIORITY_DESCENDING 1 /* chan7 highest */
unsigned char chan_priority;
}; };
/** /**
@ -33,6 +42,30 @@ enum dw_dma_slave_width {
DW_DMA_SLAVE_WIDTH_32BIT, DW_DMA_SLAVE_WIDTH_32BIT,
}; };
/* bursts size */
enum dw_dma_msize {
DW_DMA_MSIZE_1,
DW_DMA_MSIZE_4,
DW_DMA_MSIZE_8,
DW_DMA_MSIZE_16,
DW_DMA_MSIZE_32,
DW_DMA_MSIZE_64,
DW_DMA_MSIZE_128,
DW_DMA_MSIZE_256,
};
/* flow controller */
enum dw_dma_fc {
DW_DMA_FC_D_M2M,
DW_DMA_FC_D_M2P,
DW_DMA_FC_D_P2M,
DW_DMA_FC_D_P2P,
DW_DMA_FC_P_P2M,
DW_DMA_FC_SP_P2P,
DW_DMA_FC_P_M2P,
DW_DMA_FC_DP_P2P,
};
/** /**
* struct dw_dma_slave - Controller-specific information about a slave * struct dw_dma_slave - Controller-specific information about a slave
* *
@ -44,6 +77,11 @@ enum dw_dma_slave_width {
* @reg_width: peripheral register width * @reg_width: peripheral register width
* @cfg_hi: Platform-specific initializer for the CFG_HI register * @cfg_hi: Platform-specific initializer for the CFG_HI register
* @cfg_lo: Platform-specific initializer for the CFG_LO register * @cfg_lo: Platform-specific initializer for the CFG_LO register
* @src_master: src master for transfers on allocated channel.
* @dst_master: dest master for transfers on allocated channel.
* @src_msize: src burst size.
* @dst_msize: dest burst size.
* @fc: flow controller for DMA transfer
*/ */
struct dw_dma_slave { struct dw_dma_slave {
struct device *dma_dev; struct device *dma_dev;
@ -52,6 +90,11 @@ struct dw_dma_slave {
enum dw_dma_slave_width reg_width; enum dw_dma_slave_width reg_width;
u32 cfg_hi; u32 cfg_hi;
u32 cfg_lo; u32 cfg_lo;
u8 src_master;
u8 dst_master;
u8 src_msize;
u8 dst_msize;
u8 fc;
}; };
/* Platform-configurable bits in CFG_HI */ /* Platform-configurable bits in CFG_HI */
@ -62,7 +105,6 @@ struct dw_dma_slave {
#define DWC_CFGH_DST_PER(x) ((x) << 11) #define DWC_CFGH_DST_PER(x) ((x) << 11)
/* Platform-configurable bits in CFG_LO */ /* Platform-configurable bits in CFG_LO */
#define DWC_CFGL_PRIO(x) ((x) << 5) /* priority */
#define DWC_CFGL_LOCK_CH_XFER (0 << 12) /* scope of LOCK_CH */ #define DWC_CFGL_LOCK_CH_XFER (0 << 12) /* scope of LOCK_CH */
#define DWC_CFGL_LOCK_CH_BLOCK (1 << 12) #define DWC_CFGL_LOCK_CH_BLOCK (1 << 12)
#define DWC_CFGL_LOCK_CH_XACT (2 << 12) #define DWC_CFGL_LOCK_CH_XACT (2 << 12)