MIPS Kprobes: Support branch instructions probing
This patch provides support for kprobes on branch instructions. The branch instruction at the probed address is actually emulated and not executed out-of-line like other normal instructions. Instead the delay-slot instruction is copied and single stepped out of line. At the time of probe hit, the original branch instruction is evaluated and the target cp0_epc is computed similar to compute_retrun_epc(). It is also checked if the delay slot instruction can be skipped, which is true if there is a NOP in delay slot or branch is taken in case of branch likely instructions. Once the delay slot instruction is single stepped the normal execution resume with the cp0_epc updated the earlier computed cp0_epc as per the branch instructions. Signed-off-by: Maneesh Soni <manesoni@cisco.com> Signed-off-by: Victor Kamensky <kamensky@cisco.com> Cc: David Daney <david.daney@cavium.com> Cc: ananth@in.ibm.com Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/2914/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This commit is contained in:
committed by
Ralf Baechle
parent
d8d4e3ae0b
commit
6457a396bb
@@ -74,6 +74,8 @@ struct prev_kprobe {
|
|||||||
: MAX_JPROBES_STACK_SIZE)
|
: MAX_JPROBES_STACK_SIZE)
|
||||||
|
|
||||||
|
|
||||||
|
#define SKIP_DELAYSLOT 0x0001
|
||||||
|
|
||||||
/* per-cpu kprobe control block */
|
/* per-cpu kprobe control block */
|
||||||
struct kprobe_ctlblk {
|
struct kprobe_ctlblk {
|
||||||
unsigned long kprobe_status;
|
unsigned long kprobe_status;
|
||||||
@@ -82,6 +84,9 @@ struct kprobe_ctlblk {
|
|||||||
unsigned long kprobe_saved_epc;
|
unsigned long kprobe_saved_epc;
|
||||||
unsigned long jprobe_saved_sp;
|
unsigned long jprobe_saved_sp;
|
||||||
struct pt_regs jprobe_saved_regs;
|
struct pt_regs jprobe_saved_regs;
|
||||||
|
/* Per-thread fields, used while emulating branches */
|
||||||
|
unsigned long flags;
|
||||||
|
unsigned long target_epc;
|
||||||
u8 jprobes_stack[MAX_JPROBES_STACK_SIZE];
|
u8 jprobes_stack[MAX_JPROBES_STACK_SIZE];
|
||||||
struct prev_kprobe prev_kprobe;
|
struct prev_kprobe prev_kprobe;
|
||||||
};
|
};
|
||||||
|
@@ -30,6 +30,7 @@
|
|||||||
#include <linux/slab.h>
|
#include <linux/slab.h>
|
||||||
|
|
||||||
#include <asm/ptrace.h>
|
#include <asm/ptrace.h>
|
||||||
|
#include <asm/branch.h>
|
||||||
#include <asm/break.h>
|
#include <asm/break.h>
|
||||||
#include <asm/inst.h>
|
#include <asm/inst.h>
|
||||||
|
|
||||||
@@ -152,13 +153,6 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|||||||
goto out;
|
goto out;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (insn_has_delayslot(insn)) {
|
|
||||||
pr_notice("Kprobes for branch and jump instructions are not"
|
|
||||||
"supported\n");
|
|
||||||
ret = -EINVAL;
|
|
||||||
goto out;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
||||||
sizeof(mips_instruction)) == 0) &&
|
sizeof(mips_instruction)) == 0) &&
|
||||||
insn_has_delayslot(prev_insn)) {
|
insn_has_delayslot(prev_insn)) {
|
||||||
@@ -178,9 +172,20 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|||||||
* In the kprobe->ainsn.insn[] array we store the original
|
* In the kprobe->ainsn.insn[] array we store the original
|
||||||
* instruction at index zero and a break trap instruction at
|
* instruction at index zero and a break trap instruction at
|
||||||
* index one.
|
* index one.
|
||||||
|
*
|
||||||
|
* On MIPS arch if the instruction at probed address is a
|
||||||
|
* branch instruction, we need to execute the instruction at
|
||||||
|
* Branch Delayslot (BD) at the time of probe hit. As MIPS also
|
||||||
|
* doesn't have single stepping support, the BD instruction can
|
||||||
|
* not be executed in-line and it would be executed on SSOL slot
|
||||||
|
* using a normal breakpoint instruction in the next slot.
|
||||||
|
* So, read the instruction and save it for later execution.
|
||||||
*/
|
*/
|
||||||
|
if (insn_has_delayslot(insn))
|
||||||
|
memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
|
||||||
|
else
|
||||||
|
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
||||||
|
|
||||||
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
||||||
p->ainsn.insn[1] = breakpoint2_insn;
|
p->ainsn.insn[1] = breakpoint2_insn;
|
||||||
p->opcode = *p->addr;
|
p->opcode = *p->addr;
|
||||||
|
|
||||||
@@ -231,16 +236,96 @@ static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|||||||
kcb->kprobe_saved_epc = regs->cp0_epc;
|
kcb->kprobe_saved_epc = regs->cp0_epc;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
/**
|
||||||
|
* evaluate_branch_instrucion -
|
||||||
|
*
|
||||||
|
* Evaluate the branch instruction at probed address during probe hit. The
|
||||||
|
* result of evaluation would be the updated epc. The insturction in delayslot
|
||||||
|
* would actually be single stepped using a normal breakpoint) on SSOL slot.
|
||||||
|
*
|
||||||
|
* The result is also saved in the kprobe control block for later use,
|
||||||
|
* in case we need to execute the delayslot instruction. The latter will be
|
||||||
|
* false for NOP instruction in dealyslot and the branch-likely instructions
|
||||||
|
* when the branch is taken. And for those cases we set a flag as
|
||||||
|
* SKIP_DELAYSLOT in the kprobe control block
|
||||||
|
*/
|
||||||
|
static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
|
||||||
|
struct kprobe_ctlblk *kcb)
|
||||||
{
|
{
|
||||||
|
union mips_instruction insn = p->opcode;
|
||||||
|
long epc;
|
||||||
|
int ret = 0;
|
||||||
|
|
||||||
|
epc = regs->cp0_epc;
|
||||||
|
if (epc & 3)
|
||||||
|
goto unaligned;
|
||||||
|
|
||||||
|
if (p->ainsn.insn->word == 0)
|
||||||
|
kcb->flags |= SKIP_DELAYSLOT;
|
||||||
|
else
|
||||||
|
kcb->flags &= ~SKIP_DELAYSLOT;
|
||||||
|
|
||||||
|
ret = __compute_return_epc_for_insn(regs, insn);
|
||||||
|
if (ret < 0)
|
||||||
|
return ret;
|
||||||
|
|
||||||
|
if (ret == BRANCH_LIKELY_TAKEN)
|
||||||
|
kcb->flags |= SKIP_DELAYSLOT;
|
||||||
|
|
||||||
|
kcb->target_epc = regs->cp0_epc;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
unaligned:
|
||||||
|
pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
|
||||||
|
force_sig(SIGBUS, current);
|
||||||
|
return -EFAULT;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
||||||
|
struct kprobe_ctlblk *kcb)
|
||||||
|
{
|
||||||
|
int ret = 0;
|
||||||
|
|
||||||
regs->cp0_status &= ~ST0_IE;
|
regs->cp0_status &= ~ST0_IE;
|
||||||
|
|
||||||
/* single step inline if the instruction is a break */
|
/* single step inline if the instruction is a break */
|
||||||
if (p->opcode.word == breakpoint_insn.word ||
|
if (p->opcode.word == breakpoint_insn.word ||
|
||||||
p->opcode.word == breakpoint2_insn.word)
|
p->opcode.word == breakpoint2_insn.word)
|
||||||
regs->cp0_epc = (unsigned long)p->addr;
|
regs->cp0_epc = (unsigned long)p->addr;
|
||||||
else
|
else if (insn_has_delayslot(p->opcode)) {
|
||||||
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
ret = evaluate_branch_instruction(p, regs, kcb);
|
||||||
|
if (ret < 0) {
|
||||||
|
pr_notice("Kprobes: Error in evaluating branch\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Called after single-stepping. p->addr is the address of the
|
||||||
|
* instruction whose first byte has been replaced by the "break 0"
|
||||||
|
* instruction. To avoid the SMP problems that can occur when we
|
||||||
|
* temporarily put back the original opcode to single-step, we
|
||||||
|
* single-stepped a copy of the instruction. The address of this
|
||||||
|
* copy is p->ainsn.insn.
|
||||||
|
*
|
||||||
|
* This function prepares to return from the post-single-step
|
||||||
|
* breakpoint trap. In case of branch instructions, the target
|
||||||
|
* epc to be restored.
|
||||||
|
*/
|
||||||
|
static void __kprobes resume_execution(struct kprobe *p,
|
||||||
|
struct pt_regs *regs,
|
||||||
|
struct kprobe_ctlblk *kcb)
|
||||||
|
{
|
||||||
|
if (insn_has_delayslot(p->opcode))
|
||||||
|
regs->cp0_epc = kcb->target_epc;
|
||||||
|
else {
|
||||||
|
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
||||||
|
regs->cp0_epc = orig_epc + 4;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
||||||
@@ -279,8 +364,13 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|||||||
save_previous_kprobe(kcb);
|
save_previous_kprobe(kcb);
|
||||||
set_current_kprobe(p, regs, kcb);
|
set_current_kprobe(p, regs, kcb);
|
||||||
kprobes_inc_nmissed_count(p);
|
kprobes_inc_nmissed_count(p);
|
||||||
prepare_singlestep(p, regs);
|
prepare_singlestep(p, regs, kcb);
|
||||||
kcb->kprobe_status = KPROBE_REENTER;
|
kcb->kprobe_status = KPROBE_REENTER;
|
||||||
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
||||||
|
resume_execution(p, regs, kcb);
|
||||||
|
restore_previous_kprobe(kcb);
|
||||||
|
preempt_enable_no_resched();
|
||||||
|
}
|
||||||
return 1;
|
return 1;
|
||||||
} else {
|
} else {
|
||||||
if (addr->word != breakpoint_insn.word) {
|
if (addr->word != breakpoint_insn.word) {
|
||||||
@@ -324,8 +414,16 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|||||||
}
|
}
|
||||||
|
|
||||||
ss_probe:
|
ss_probe:
|
||||||
prepare_singlestep(p, regs);
|
prepare_singlestep(p, regs, kcb);
|
||||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
||||||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||||||
|
if (p->post_handler)
|
||||||
|
p->post_handler(p, regs, 0);
|
||||||
|
resume_execution(p, regs, kcb);
|
||||||
|
preempt_enable_no_resched();
|
||||||
|
} else
|
||||||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
|
|
||||||
no_kprobe:
|
no_kprobe:
|
||||||
@@ -334,25 +432,6 @@ no_kprobe:
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
* Called after single-stepping. p->addr is the address of the
|
|
||||||
* instruction whose first byte has been replaced by the "break 0"
|
|
||||||
* instruction. To avoid the SMP problems that can occur when we
|
|
||||||
* temporarily put back the original opcode to single-step, we
|
|
||||||
* single-stepped a copy of the instruction. The address of this
|
|
||||||
* copy is p->ainsn.insn.
|
|
||||||
*
|
|
||||||
* This function prepares to return from the post-single-step
|
|
||||||
* breakpoint trap.
|
|
||||||
*/
|
|
||||||
static void __kprobes resume_execution(struct kprobe *p,
|
|
||||||
struct pt_regs *regs,
|
|
||||||
struct kprobe_ctlblk *kcb)
|
|
||||||
{
|
|
||||||
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
|
||||||
regs->cp0_epc = orig_epc + 4;
|
|
||||||
}
|
|
||||||
|
|
||||||
static inline int post_kprobe_handler(struct pt_regs *regs)
|
static inline int post_kprobe_handler(struct pt_regs *regs)
|
||||||
{
|
{
|
||||||
struct kprobe *cur = kprobe_running();
|
struct kprobe *cur = kprobe_running();
|
||||||
|
Reference in New Issue
Block a user