Generic semaphore implementation

Semaphores are no longer performance-critical, so a generic C
implementation is better for maintainability, debuggability and
extensibility.  Thanks to Peter Zijlstra for fixing the lockdep
warning.  Thanks to Harvey Harrison for pointing out that the
unlikely() was unnecessary.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Matthew Wilcox
2008-03-07 21:55:58 -05:00
committed by Matthew Wilcox
parent e48b3deee4
commit 64ac24e738
113 changed files with 314 additions and 7679 deletions

View File

@ -5,7 +5,7 @@
extra-y := head_32.o init_task.o vmlinux.lds
obj-y := debugtraps.o io.o io_generic.o irq.o machvec.o process_32.o \
ptrace_32.o semaphore.o setup.o signal_32.o sys_sh.o sys_sh32.o \
ptrace_32.o setup.o signal_32.o sys_sh.o sys_sh32.o \
syscalls_32.o time_32.o topology.o traps.o traps_32.o
obj-y += cpu/ timers/

View File

@ -1,7 +1,7 @@
extra-y := head_64.o init_task.o vmlinux.lds
obj-y := debugtraps.o io.o io_generic.o irq.o machvec.o process_64.o \
ptrace_64.o semaphore.o setup.o signal_64.o sys_sh.o sys_sh64.o \
ptrace_64.o setup.o signal_64.o sys_sh.o sys_sh64.o \
syscalls_64.o time_64.o topology.o traps.o traps_64.o
obj-y += cpu/ timers/

View File

@ -1,139 +0,0 @@
/*
* Just taken from alpha implementation.
* This can't work well, perhaps.
*/
/*
* Generic semaphore code. Buyer beware. Do your own
* specific changes in <asm/semaphore-helper.h>
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/init.h>
#include <asm/semaphore.h>
#include <asm/semaphore-helper.h>
DEFINE_SPINLOCK(semaphore_wake_lock);
/*
* Semaphores are implemented using a two-way counter:
* The "count" variable is decremented for each process
* that tries to sleep, while the "waking" variable is
* incremented when the "up()" code goes to wake up waiting
* processes.
*
* Notably, the inline "up()" and "down()" functions can
* efficiently test if they need to do any extra work (up
* needs to do something only if count was negative before
* the increment operation.
*
* waking_non_zero() (from asm/semaphore.h) must execute
* atomically.
*
* When __up() is called, the count was negative before
* incrementing it, and we need to wake up somebody.
*
* This routine adds one to the count of processes that need to
* wake up and exit. ALL waiting processes actually wake up but
* only the one that gets to the "waking" field first will gate
* through and acquire the semaphore. The others will go back
* to sleep.
*
* Note that these functions are only called when there is
* contention on the lock, and as such all this is the
* "non-critical" part of the whole semaphore business. The
* critical part is the inline stuff in <asm/semaphore.h>
* where we want to avoid any extra jumps and calls.
*/
void __up(struct semaphore *sem)
{
wake_one_more(sem);
wake_up(&sem->wait);
}
/*
* Perform the "down" function. Return zero for semaphore acquired,
* return negative for signalled out of the function.
*
* If called from __down, the return is ignored and the wait loop is
* not interruptible. This means that a task waiting on a semaphore
* using "down()" cannot be killed until someone does an "up()" on
* the semaphore.
*
* If called from __down_interruptible, the return value gets checked
* upon return. If the return value is negative then the task continues
* with the negative value in the return register (it can be tested by
* the caller).
*
* Either form may be used in conjunction with "up()".
*
*/
#define DOWN_VAR \
struct task_struct *tsk = current; \
wait_queue_t wait; \
init_waitqueue_entry(&wait, tsk);
#define DOWN_HEAD(task_state) \
\
\
tsk->state = (task_state); \
add_wait_queue(&sem->wait, &wait); \
\
/* \
* Ok, we're set up. sem->count is known to be less than zero \
* so we must wait. \
* \
* We can let go the lock for purposes of waiting. \
* We re-acquire it after awaking so as to protect \
* all semaphore operations. \
* \
* If "up()" is called before we call waking_non_zero() then \
* we will catch it right away. If it is called later then \
* we will have to go through a wakeup cycle to catch it. \
* \
* Multiple waiters contend for the semaphore lock to see \
* who gets to gate through and who has to wait some more. \
*/ \
for (;;) {
#define DOWN_TAIL(task_state) \
tsk->state = (task_state); \
} \
tsk->state = TASK_RUNNING; \
remove_wait_queue(&sem->wait, &wait);
void __sched __down(struct semaphore * sem)
{
DOWN_VAR
DOWN_HEAD(TASK_UNINTERRUPTIBLE)
if (waking_non_zero(sem))
break;
schedule();
DOWN_TAIL(TASK_UNINTERRUPTIBLE)
}
int __sched __down_interruptible(struct semaphore * sem)
{
int ret = 0;
DOWN_VAR
DOWN_HEAD(TASK_INTERRUPTIBLE)
ret = waking_non_zero_interruptible(sem, tsk);
if (ret)
{
if (ret == 1)
/* ret != 0 only if we get interrupted -arca */
ret = 0;
break;
}
schedule();
DOWN_TAIL(TASK_INTERRUPTIBLE)
return ret;
}
int __down_trylock(struct semaphore * sem)
{
return waking_non_zero_trylock(sem);
}

View File

@ -9,7 +9,6 @@
#include <linux/pci.h>
#include <linux/irq.h>
#include <asm/sections.h>
#include <asm/semaphore.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/checksum.h>
@ -48,12 +47,6 @@ EXPORT_SYMBOL(__copy_user);
EXPORT_SYMBOL(get_vm_area);
#endif
/* semaphore exports */
EXPORT_SYMBOL(__up);
EXPORT_SYMBOL(__down);
EXPORT_SYMBOL(__down_interruptible);
EXPORT_SYMBOL(__down_trylock);
EXPORT_SYMBOL(__udelay);
EXPORT_SYMBOL(__ndelay);
EXPORT_SYMBOL(__const_udelay);

View File

@ -16,7 +16,6 @@
#include <linux/in6.h>
#include <linux/interrupt.h>
#include <linux/screen_info.h>
#include <asm/semaphore.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/checksum.h>
@ -37,9 +36,6 @@ EXPORT_SYMBOL(csum_partial_copy_nocheck);
EXPORT_SYMBOL(screen_info);
#endif
EXPORT_SYMBOL(__down);
EXPORT_SYMBOL(__down_trylock);
EXPORT_SYMBOL(__up);
EXPORT_SYMBOL(__put_user_asm_l);
EXPORT_SYMBOL(__get_user_asm_l);
EXPORT_SYMBOL(copy_page);