mm: re-architect the VM_UNPAGED logic

This replaces the (in my opinion horrible) VM_UNMAPPED logic with very
explicit support for a "remapped page range" aka VM_PFNMAP.  It allows a
VM area to contain an arbitrary range of page table entries that the VM
never touches, and never considers to be normal pages.

Any user of "remap_pfn_range()" automatically gets this new
functionality, and doesn't even have to mark the pages reserved or
indeed mark them any other way.  It just works.  As a side effect, doing
mmap() on /dev/mem works for arbitrary ranges.

Sparc update from David in the next commit.

Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Linus Torvalds
2005-11-28 14:34:23 -08:00
parent 458af5439f
commit 6aab341e0a
11 changed files with 127 additions and 146 deletions

View File

@@ -145,8 +145,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma)
struct page *pg = virt_to_page(vdso32_kbase +
i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start +
i*PAGE_SIZE, 0)
follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
: NULL;
dump_one_vdso_page(pg, upg);
}
@@ -157,8 +156,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma)
struct page *pg = virt_to_page(vdso64_kbase +
i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start +
i*PAGE_SIZE, 0)
follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
: NULL;
dump_one_vdso_page(pg, upg);
}