sched: use a 2-d bitmap for searching lowest-pri CPU
The current code use a linear algorithm which causes scaling issues on larger SMP machines. This patch replaces that algorithm with a 2-dimensional bitmap to reduce latencies in the wake-up path. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Acked-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
committed by
Ingo Molnar
parent
f333fdc909
commit
6e0534f278
174
kernel/sched_cpupri.c
Normal file
174
kernel/sched_cpupri.c
Normal file
@@ -0,0 +1,174 @@
|
||||
/*
|
||||
* kernel/sched_cpupri.c
|
||||
*
|
||||
* CPU priority management
|
||||
*
|
||||
* Copyright (C) 2007-2008 Novell
|
||||
*
|
||||
* Author: Gregory Haskins <ghaskins@novell.com>
|
||||
*
|
||||
* This code tracks the priority of each CPU so that global migration
|
||||
* decisions are easy to calculate. Each CPU can be in a state as follows:
|
||||
*
|
||||
* (INVALID), IDLE, NORMAL, RT1, ... RT99
|
||||
*
|
||||
* going from the lowest priority to the highest. CPUs in the INVALID state
|
||||
* are not eligible for routing. The system maintains this state with
|
||||
* a 2 dimensional bitmap (the first for priority class, the second for cpus
|
||||
* in that class). Therefore a typical application without affinity
|
||||
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
|
||||
* searches). For tasks with affinity restrictions, the algorithm has a
|
||||
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
|
||||
* yields the worst case search is fairly contrived.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
|
||||
#include "sched_cpupri.h"
|
||||
|
||||
/* Convert between a 140 based task->prio, and our 102 based cpupri */
|
||||
static int convert_prio(int prio)
|
||||
{
|
||||
int cpupri;
|
||||
|
||||
if (prio == CPUPRI_INVALID)
|
||||
cpupri = CPUPRI_INVALID;
|
||||
else if (prio == MAX_PRIO)
|
||||
cpupri = CPUPRI_IDLE;
|
||||
else if (prio >= MAX_RT_PRIO)
|
||||
cpupri = CPUPRI_NORMAL;
|
||||
else
|
||||
cpupri = MAX_RT_PRIO - prio + 1;
|
||||
|
||||
return cpupri;
|
||||
}
|
||||
|
||||
#define for_each_cpupri_active(array, idx) \
|
||||
for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
|
||||
idx < CPUPRI_NR_PRIORITIES; \
|
||||
idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
|
||||
|
||||
/**
|
||||
* cpupri_find - find the best (lowest-pri) CPU in the system
|
||||
* @cp: The cpupri context
|
||||
* @p: The task
|
||||
* @lowest_mask: A mask to fill in with selected CPUs
|
||||
*
|
||||
* Note: This function returns the recommended CPUs as calculated during the
|
||||
* current invokation. By the time the call returns, the CPUs may have in
|
||||
* fact changed priorities any number of times. While not ideal, it is not
|
||||
* an issue of correctness since the normal rebalancer logic will correct
|
||||
* any discrepancies created by racing against the uncertainty of the current
|
||||
* priority configuration.
|
||||
*
|
||||
* Returns: (int)bool - CPUs were found
|
||||
*/
|
||||
int cpupri_find(struct cpupri *cp, struct task_struct *p,
|
||||
cpumask_t *lowest_mask)
|
||||
{
|
||||
int idx = 0;
|
||||
int task_pri = convert_prio(p->prio);
|
||||
|
||||
for_each_cpupri_active(cp->pri_active, idx) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
|
||||
cpumask_t mask;
|
||||
|
||||
if (idx >= task_pri)
|
||||
break;
|
||||
|
||||
cpus_and(mask, p->cpus_allowed, vec->mask);
|
||||
|
||||
if (cpus_empty(mask))
|
||||
continue;
|
||||
|
||||
*lowest_mask = mask;
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_set - update the cpu priority setting
|
||||
* @cp: The cpupri context
|
||||
* @cpu: The target cpu
|
||||
* @pri: The priority (INVALID-RT99) to assign to this CPU
|
||||
*
|
||||
* Note: Assumes cpu_rq(cpu)->lock is locked
|
||||
*
|
||||
* Returns: (void)
|
||||
*/
|
||||
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
|
||||
{
|
||||
int *currpri = &cp->cpu_to_pri[cpu];
|
||||
int oldpri = *currpri;
|
||||
unsigned long flags;
|
||||
|
||||
newpri = convert_prio(newpri);
|
||||
|
||||
BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
|
||||
|
||||
if (newpri == oldpri)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If the cpu was currently mapped to a different value, we
|
||||
* first need to unmap the old value
|
||||
*/
|
||||
if (likely(oldpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
|
||||
|
||||
spin_lock_irqsave(&vec->lock, flags);
|
||||
|
||||
vec->count--;
|
||||
if (!vec->count)
|
||||
clear_bit(oldpri, cp->pri_active);
|
||||
cpu_clear(cpu, vec->mask);
|
||||
|
||||
spin_unlock_irqrestore(&vec->lock, flags);
|
||||
}
|
||||
|
||||
if (likely(newpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
|
||||
|
||||
spin_lock_irqsave(&vec->lock, flags);
|
||||
|
||||
cpu_set(cpu, vec->mask);
|
||||
vec->count++;
|
||||
if (vec->count == 1)
|
||||
set_bit(newpri, cp->pri_active);
|
||||
|
||||
spin_unlock_irqrestore(&vec->lock, flags);
|
||||
}
|
||||
|
||||
*currpri = newpri;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_init - initialize the cpupri structure
|
||||
* @cp: The cpupri context
|
||||
*
|
||||
* Returns: (void)
|
||||
*/
|
||||
void cpupri_init(struct cpupri *cp)
|
||||
{
|
||||
int i;
|
||||
|
||||
memset(cp, 0, sizeof(*cp));
|
||||
|
||||
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[i];
|
||||
|
||||
spin_lock_init(&vec->lock);
|
||||
vec->count = 0;
|
||||
cpus_clear(vec->mask);
|
||||
}
|
||||
|
||||
for_each_possible_cpu(i)
|
||||
cp->cpu_to_pri[i] = CPUPRI_INVALID;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user