Merge branch 'core/percpu' into percpu-cpumask-x86-for-linus-2
Conflicts: arch/parisc/kernel/irq.c arch/x86/include/asm/fixmap_64.h arch/x86/include/asm/setup.h kernel/irq/handle.c Semantic merge: arch/x86/include/asm/fixmap.h Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
14
lib/Kconfig
14
lib/Kconfig
@@ -97,6 +97,20 @@ config LZO_COMPRESS
|
||||
config LZO_DECOMPRESS
|
||||
tristate
|
||||
|
||||
#
|
||||
# These all provide a common interface (hence the apparent duplication with
|
||||
# ZLIB_INFLATE; DECOMPRESS_GZIP is just a wrapper.)
|
||||
#
|
||||
config DECOMPRESS_GZIP
|
||||
select ZLIB_INFLATE
|
||||
tristate
|
||||
|
||||
config DECOMPRESS_BZIP2
|
||||
tristate
|
||||
|
||||
config DECOMPRESS_LZMA
|
||||
tristate
|
||||
|
||||
#
|
||||
# Generic allocator support is selected if needed
|
||||
#
|
||||
|
@@ -12,7 +12,7 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \
|
||||
idr.o int_sqrt.o extable.o prio_tree.o \
|
||||
sha1.o irq_regs.o reciprocal_div.o argv_split.o \
|
||||
proportions.o prio_heap.o ratelimit.o show_mem.o \
|
||||
is_single_threaded.o plist.o
|
||||
is_single_threaded.o plist.o decompress.o
|
||||
|
||||
lib-$(CONFIG_MMU) += ioremap.o
|
||||
lib-$(CONFIG_SMP) += cpumask.o
|
||||
@@ -65,6 +65,10 @@ obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
|
||||
obj-$(CONFIG_LZO_COMPRESS) += lzo/
|
||||
obj-$(CONFIG_LZO_DECOMPRESS) += lzo/
|
||||
|
||||
lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
|
||||
lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
|
||||
lib-$(CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o
|
||||
|
||||
obj-$(CONFIG_TEXTSEARCH) += textsearch.o
|
||||
obj-$(CONFIG_TEXTSEARCH_KMP) += ts_kmp.o
|
||||
obj-$(CONFIG_TEXTSEARCH_BM) += ts_bm.o
|
||||
|
54
lib/decompress.c
Normal file
54
lib/decompress.c
Normal file
@@ -0,0 +1,54 @@
|
||||
/*
|
||||
* decompress.c
|
||||
*
|
||||
* Detect the decompression method based on magic number
|
||||
*/
|
||||
|
||||
#include <linux/decompress/generic.h>
|
||||
|
||||
#include <linux/decompress/bunzip2.h>
|
||||
#include <linux/decompress/unlzma.h>
|
||||
#include <linux/decompress/inflate.h>
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/string.h>
|
||||
|
||||
#ifndef CONFIG_DECOMPRESS_GZIP
|
||||
# define gunzip NULL
|
||||
#endif
|
||||
#ifndef CONFIG_DECOMPRESS_BZIP2
|
||||
# define bunzip2 NULL
|
||||
#endif
|
||||
#ifndef CONFIG_DECOMPRESS_LZMA
|
||||
# define unlzma NULL
|
||||
#endif
|
||||
|
||||
static const struct compress_format {
|
||||
unsigned char magic[2];
|
||||
const char *name;
|
||||
decompress_fn decompressor;
|
||||
} compressed_formats[] = {
|
||||
{ {037, 0213}, "gzip", gunzip },
|
||||
{ {037, 0236}, "gzip", gunzip },
|
||||
{ {0x42, 0x5a}, "bzip2", bunzip2 },
|
||||
{ {0x5d, 0x00}, "lzma", unlzma },
|
||||
{ {0, 0}, NULL, NULL }
|
||||
};
|
||||
|
||||
decompress_fn decompress_method(const unsigned char *inbuf, int len,
|
||||
const char **name)
|
||||
{
|
||||
const struct compress_format *cf;
|
||||
|
||||
if (len < 2)
|
||||
return NULL; /* Need at least this much... */
|
||||
|
||||
for (cf = compressed_formats; cf->name; cf++) {
|
||||
if (!memcmp(inbuf, cf->magic, 2))
|
||||
break;
|
||||
|
||||
}
|
||||
if (name)
|
||||
*name = cf->name;
|
||||
return cf->decompressor;
|
||||
}
|
735
lib/decompress_bunzip2.c
Normal file
735
lib/decompress_bunzip2.c
Normal file
@@ -0,0 +1,735 @@
|
||||
/* vi: set sw = 4 ts = 4: */
|
||||
/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
|
||||
|
||||
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
|
||||
which also acknowledges contributions by Mike Burrows, David Wheeler,
|
||||
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
|
||||
Robert Sedgewick, and Jon L. Bentley.
|
||||
|
||||
This code is licensed under the LGPLv2:
|
||||
LGPL (http://www.gnu.org/copyleft/lgpl.html
|
||||
*/
|
||||
|
||||
/*
|
||||
Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
|
||||
|
||||
More efficient reading of Huffman codes, a streamlined read_bunzip()
|
||||
function, and various other tweaks. In (limited) tests, approximately
|
||||
20% faster than bzcat on x86 and about 10% faster on arm.
|
||||
|
||||
Note that about 2/3 of the time is spent in read_unzip() reversing
|
||||
the Burrows-Wheeler transformation. Much of that time is delay
|
||||
resulting from cache misses.
|
||||
|
||||
I would ask that anyone benefiting from this work, especially those
|
||||
using it in commercial products, consider making a donation to my local
|
||||
non-profit hospice organization in the name of the woman I loved, who
|
||||
passed away Feb. 12, 2003.
|
||||
|
||||
In memory of Toni W. Hagan
|
||||
|
||||
Hospice of Acadiana, Inc.
|
||||
2600 Johnston St., Suite 200
|
||||
Lafayette, LA 70503-3240
|
||||
|
||||
Phone (337) 232-1234 or 1-800-738-2226
|
||||
Fax (337) 232-1297
|
||||
|
||||
http://www.hospiceacadiana.com/
|
||||
|
||||
Manuel
|
||||
*/
|
||||
|
||||
/*
|
||||
Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
|
||||
*/
|
||||
|
||||
|
||||
#ifndef STATIC
|
||||
#include <linux/decompress/bunzip2.h>
|
||||
#endif /* !STATIC */
|
||||
|
||||
#include <linux/decompress/mm.h>
|
||||
|
||||
#ifndef INT_MAX
|
||||
#define INT_MAX 0x7fffffff
|
||||
#endif
|
||||
|
||||
/* Constants for Huffman coding */
|
||||
#define MAX_GROUPS 6
|
||||
#define GROUP_SIZE 50 /* 64 would have been more efficient */
|
||||
#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
|
||||
#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
|
||||
#define SYMBOL_RUNA 0
|
||||
#define SYMBOL_RUNB 1
|
||||
|
||||
/* Status return values */
|
||||
#define RETVAL_OK 0
|
||||
#define RETVAL_LAST_BLOCK (-1)
|
||||
#define RETVAL_NOT_BZIP_DATA (-2)
|
||||
#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
|
||||
#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
|
||||
#define RETVAL_DATA_ERROR (-5)
|
||||
#define RETVAL_OUT_OF_MEMORY (-6)
|
||||
#define RETVAL_OBSOLETE_INPUT (-7)
|
||||
|
||||
/* Other housekeeping constants */
|
||||
#define BZIP2_IOBUF_SIZE 4096
|
||||
|
||||
/* This is what we know about each Huffman coding group */
|
||||
struct group_data {
|
||||
/* We have an extra slot at the end of limit[] for a sentinal value. */
|
||||
int limit[MAX_HUFCODE_BITS+1];
|
||||
int base[MAX_HUFCODE_BITS];
|
||||
int permute[MAX_SYMBOLS];
|
||||
int minLen, maxLen;
|
||||
};
|
||||
|
||||
/* Structure holding all the housekeeping data, including IO buffers and
|
||||
memory that persists between calls to bunzip */
|
||||
struct bunzip_data {
|
||||
/* State for interrupting output loop */
|
||||
int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
|
||||
/* I/O tracking data (file handles, buffers, positions, etc.) */
|
||||
int (*fill)(void*, unsigned int);
|
||||
int inbufCount, inbufPos /*, outbufPos*/;
|
||||
unsigned char *inbuf /*,*outbuf*/;
|
||||
unsigned int inbufBitCount, inbufBits;
|
||||
/* The CRC values stored in the block header and calculated from the
|
||||
data */
|
||||
unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
|
||||
/* Intermediate buffer and its size (in bytes) */
|
||||
unsigned int *dbuf, dbufSize;
|
||||
/* These things are a bit too big to go on the stack */
|
||||
unsigned char selectors[32768]; /* nSelectors = 15 bits */
|
||||
struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
|
||||
int io_error; /* non-zero if we have IO error */
|
||||
};
|
||||
|
||||
|
||||
/* Return the next nnn bits of input. All reads from the compressed input
|
||||
are done through this function. All reads are big endian */
|
||||
static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
|
||||
{
|
||||
unsigned int bits = 0;
|
||||
|
||||
/* If we need to get more data from the byte buffer, do so.
|
||||
(Loop getting one byte at a time to enforce endianness and avoid
|
||||
unaligned access.) */
|
||||
while (bd->inbufBitCount < bits_wanted) {
|
||||
/* If we need to read more data from file into byte buffer, do
|
||||
so */
|
||||
if (bd->inbufPos == bd->inbufCount) {
|
||||
if (bd->io_error)
|
||||
return 0;
|
||||
bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
|
||||
if (bd->inbufCount <= 0) {
|
||||
bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
|
||||
return 0;
|
||||
}
|
||||
bd->inbufPos = 0;
|
||||
}
|
||||
/* Avoid 32-bit overflow (dump bit buffer to top of output) */
|
||||
if (bd->inbufBitCount >= 24) {
|
||||
bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
|
||||
bits_wanted -= bd->inbufBitCount;
|
||||
bits <<= bits_wanted;
|
||||
bd->inbufBitCount = 0;
|
||||
}
|
||||
/* Grab next 8 bits of input from buffer. */
|
||||
bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
|
||||
bd->inbufBitCount += 8;
|
||||
}
|
||||
/* Calculate result */
|
||||
bd->inbufBitCount -= bits_wanted;
|
||||
bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
|
||||
|
||||
return bits;
|
||||
}
|
||||
|
||||
/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
|
||||
|
||||
static int INIT get_next_block(struct bunzip_data *bd)
|
||||
{
|
||||
struct group_data *hufGroup = NULL;
|
||||
int *base = NULL;
|
||||
int *limit = NULL;
|
||||
int dbufCount, nextSym, dbufSize, groupCount, selector,
|
||||
i, j, k, t, runPos, symCount, symTotal, nSelectors,
|
||||
byteCount[256];
|
||||
unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
|
||||
unsigned int *dbuf, origPtr;
|
||||
|
||||
dbuf = bd->dbuf;
|
||||
dbufSize = bd->dbufSize;
|
||||
selectors = bd->selectors;
|
||||
|
||||
/* Read in header signature and CRC, then validate signature.
|
||||
(last block signature means CRC is for whole file, return now) */
|
||||
i = get_bits(bd, 24);
|
||||
j = get_bits(bd, 24);
|
||||
bd->headerCRC = get_bits(bd, 32);
|
||||
if ((i == 0x177245) && (j == 0x385090))
|
||||
return RETVAL_LAST_BLOCK;
|
||||
if ((i != 0x314159) || (j != 0x265359))
|
||||
return RETVAL_NOT_BZIP_DATA;
|
||||
/* We can add support for blockRandomised if anybody complains.
|
||||
There was some code for this in busybox 1.0.0-pre3, but nobody ever
|
||||
noticed that it didn't actually work. */
|
||||
if (get_bits(bd, 1))
|
||||
return RETVAL_OBSOLETE_INPUT;
|
||||
origPtr = get_bits(bd, 24);
|
||||
if (origPtr > dbufSize)
|
||||
return RETVAL_DATA_ERROR;
|
||||
/* mapping table: if some byte values are never used (encoding things
|
||||
like ascii text), the compression code removes the gaps to have fewer
|
||||
symbols to deal with, and writes a sparse bitfield indicating which
|
||||
values were present. We make a translation table to convert the
|
||||
symbols back to the corresponding bytes. */
|
||||
t = get_bits(bd, 16);
|
||||
symTotal = 0;
|
||||
for (i = 0; i < 16; i++) {
|
||||
if (t&(1 << (15-i))) {
|
||||
k = get_bits(bd, 16);
|
||||
for (j = 0; j < 16; j++)
|
||||
if (k&(1 << (15-j)))
|
||||
symToByte[symTotal++] = (16*i)+j;
|
||||
}
|
||||
}
|
||||
/* How many different Huffman coding groups does this block use? */
|
||||
groupCount = get_bits(bd, 3);
|
||||
if (groupCount < 2 || groupCount > MAX_GROUPS)
|
||||
return RETVAL_DATA_ERROR;
|
||||
/* nSelectors: Every GROUP_SIZE many symbols we select a new
|
||||
Huffman coding group. Read in the group selector list,
|
||||
which is stored as MTF encoded bit runs. (MTF = Move To
|
||||
Front, as each value is used it's moved to the start of the
|
||||
list.) */
|
||||
nSelectors = get_bits(bd, 15);
|
||||
if (!nSelectors)
|
||||
return RETVAL_DATA_ERROR;
|
||||
for (i = 0; i < groupCount; i++)
|
||||
mtfSymbol[i] = i;
|
||||
for (i = 0; i < nSelectors; i++) {
|
||||
/* Get next value */
|
||||
for (j = 0; get_bits(bd, 1); j++)
|
||||
if (j >= groupCount)
|
||||
return RETVAL_DATA_ERROR;
|
||||
/* Decode MTF to get the next selector */
|
||||
uc = mtfSymbol[j];
|
||||
for (; j; j--)
|
||||
mtfSymbol[j] = mtfSymbol[j-1];
|
||||
mtfSymbol[0] = selectors[i] = uc;
|
||||
}
|
||||
/* Read the Huffman coding tables for each group, which code
|
||||
for symTotal literal symbols, plus two run symbols (RUNA,
|
||||
RUNB) */
|
||||
symCount = symTotal+2;
|
||||
for (j = 0; j < groupCount; j++) {
|
||||
unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
|
||||
int minLen, maxLen, pp;
|
||||
/* Read Huffman code lengths for each symbol. They're
|
||||
stored in a way similar to mtf; record a starting
|
||||
value for the first symbol, and an offset from the
|
||||
previous value for everys symbol after that.
|
||||
(Subtracting 1 before the loop and then adding it
|
||||
back at the end is an optimization that makes the
|
||||
test inside the loop simpler: symbol length 0
|
||||
becomes negative, so an unsigned inequality catches
|
||||
it.) */
|
||||
t = get_bits(bd, 5)-1;
|
||||
for (i = 0; i < symCount; i++) {
|
||||
for (;;) {
|
||||
if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
|
||||
return RETVAL_DATA_ERROR;
|
||||
|
||||
/* If first bit is 0, stop. Else
|
||||
second bit indicates whether to
|
||||
increment or decrement the value.
|
||||
Optimization: grab 2 bits and unget
|
||||
the second if the first was 0. */
|
||||
|
||||
k = get_bits(bd, 2);
|
||||
if (k < 2) {
|
||||
bd->inbufBitCount++;
|
||||
break;
|
||||
}
|
||||
/* Add one if second bit 1, else
|
||||
* subtract 1. Avoids if/else */
|
||||
t += (((k+1)&2)-1);
|
||||
}
|
||||
/* Correct for the initial -1, to get the
|
||||
* final symbol length */
|
||||
length[i] = t+1;
|
||||
}
|
||||
/* Find largest and smallest lengths in this group */
|
||||
minLen = maxLen = length[0];
|
||||
|
||||
for (i = 1; i < symCount; i++) {
|
||||
if (length[i] > maxLen)
|
||||
maxLen = length[i];
|
||||
else if (length[i] < minLen)
|
||||
minLen = length[i];
|
||||
}
|
||||
|
||||
/* Calculate permute[], base[], and limit[] tables from
|
||||
* length[].
|
||||
*
|
||||
* permute[] is the lookup table for converting
|
||||
* Huffman coded symbols into decoded symbols. base[]
|
||||
* is the amount to subtract from the value of a
|
||||
* Huffman symbol of a given length when using
|
||||
* permute[].
|
||||
*
|
||||
* limit[] indicates the largest numerical value a
|
||||
* symbol with a given number of bits can have. This
|
||||
* is how the Huffman codes can vary in length: each
|
||||
* code with a value > limit[length] needs another
|
||||
* bit.
|
||||
*/
|
||||
hufGroup = bd->groups+j;
|
||||
hufGroup->minLen = minLen;
|
||||
hufGroup->maxLen = maxLen;
|
||||
/* Note that minLen can't be smaller than 1, so we
|
||||
adjust the base and limit array pointers so we're
|
||||
not always wasting the first entry. We do this
|
||||
again when using them (during symbol decoding).*/
|
||||
base = hufGroup->base-1;
|
||||
limit = hufGroup->limit-1;
|
||||
/* Calculate permute[]. Concurently, initialize
|
||||
* temp[] and limit[]. */
|
||||
pp = 0;
|
||||
for (i = minLen; i <= maxLen; i++) {
|
||||
temp[i] = limit[i] = 0;
|
||||
for (t = 0; t < symCount; t++)
|
||||
if (length[t] == i)
|
||||
hufGroup->permute[pp++] = t;
|
||||
}
|
||||
/* Count symbols coded for at each bit length */
|
||||
for (i = 0; i < symCount; i++)
|
||||
temp[length[i]]++;
|
||||
/* Calculate limit[] (the largest symbol-coding value
|
||||
*at each bit length, which is (previous limit <<
|
||||
*1)+symbols at this level), and base[] (number of
|
||||
*symbols to ignore at each bit length, which is limit
|
||||
*minus the cumulative count of symbols coded for
|
||||
*already). */
|
||||
pp = t = 0;
|
||||
for (i = minLen; i < maxLen; i++) {
|
||||
pp += temp[i];
|
||||
/* We read the largest possible symbol size
|
||||
and then unget bits after determining how
|
||||
many we need, and those extra bits could be
|
||||
set to anything. (They're noise from
|
||||
future symbols.) At each level we're
|
||||
really only interested in the first few
|
||||
bits, so here we set all the trailing
|
||||
to-be-ignored bits to 1 so they don't
|
||||
affect the value > limit[length]
|
||||
comparison. */
|
||||
limit[i] = (pp << (maxLen - i)) - 1;
|
||||
pp <<= 1;
|
||||
base[i+1] = pp-(t += temp[i]);
|
||||
}
|
||||
limit[maxLen+1] = INT_MAX; /* Sentinal value for
|
||||
* reading next sym. */
|
||||
limit[maxLen] = pp+temp[maxLen]-1;
|
||||
base[minLen] = 0;
|
||||
}
|
||||
/* We've finished reading and digesting the block header. Now
|
||||
read this block's Huffman coded symbols from the file and
|
||||
undo the Huffman coding and run length encoding, saving the
|
||||
result into dbuf[dbufCount++] = uc */
|
||||
|
||||
/* Initialize symbol occurrence counters and symbol Move To
|
||||
* Front table */
|
||||
for (i = 0; i < 256; i++) {
|
||||
byteCount[i] = 0;
|
||||
mtfSymbol[i] = (unsigned char)i;
|
||||
}
|
||||
/* Loop through compressed symbols. */
|
||||
runPos = dbufCount = symCount = selector = 0;
|
||||
for (;;) {
|
||||
/* Determine which Huffman coding group to use. */
|
||||
if (!(symCount--)) {
|
||||
symCount = GROUP_SIZE-1;
|
||||
if (selector >= nSelectors)
|
||||
return RETVAL_DATA_ERROR;
|
||||
hufGroup = bd->groups+selectors[selector++];
|
||||
base = hufGroup->base-1;
|
||||
limit = hufGroup->limit-1;
|
||||
}
|
||||
/* Read next Huffman-coded symbol. */
|
||||
/* Note: It is far cheaper to read maxLen bits and
|
||||
back up than it is to read minLen bits and then an
|
||||
additional bit at a time, testing as we go.
|
||||
Because there is a trailing last block (with file
|
||||
CRC), there is no danger of the overread causing an
|
||||
unexpected EOF for a valid compressed file. As a
|
||||
further optimization, we do the read inline
|
||||
(falling back to a call to get_bits if the buffer
|
||||
runs dry). The following (up to got_huff_bits:) is
|
||||
equivalent to j = get_bits(bd, hufGroup->maxLen);
|
||||
*/
|
||||
while (bd->inbufBitCount < hufGroup->maxLen) {
|
||||
if (bd->inbufPos == bd->inbufCount) {
|
||||
j = get_bits(bd, hufGroup->maxLen);
|
||||
goto got_huff_bits;
|
||||
}
|
||||
bd->inbufBits =
|
||||
(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
|
||||
bd->inbufBitCount += 8;
|
||||
};
|
||||
bd->inbufBitCount -= hufGroup->maxLen;
|
||||
j = (bd->inbufBits >> bd->inbufBitCount)&
|
||||
((1 << hufGroup->maxLen)-1);
|
||||
got_huff_bits:
|
||||
/* Figure how how many bits are in next symbol and
|
||||
* unget extras */
|
||||
i = hufGroup->minLen;
|
||||
while (j > limit[i])
|
||||
++i;
|
||||
bd->inbufBitCount += (hufGroup->maxLen - i);
|
||||
/* Huffman decode value to get nextSym (with bounds checking) */
|
||||
if ((i > hufGroup->maxLen)
|
||||
|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
|
||||
>= MAX_SYMBOLS))
|
||||
return RETVAL_DATA_ERROR;
|
||||
nextSym = hufGroup->permute[j];
|
||||
/* We have now decoded the symbol, which indicates
|
||||
either a new literal byte, or a repeated run of the
|
||||
most recent literal byte. First, check if nextSym
|
||||
indicates a repeated run, and if so loop collecting
|
||||
how many times to repeat the last literal. */
|
||||
if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
|
||||
/* If this is the start of a new run, zero out
|
||||
* counter */
|
||||
if (!runPos) {
|
||||
runPos = 1;
|
||||
t = 0;
|
||||
}
|
||||
/* Neat trick that saves 1 symbol: instead of
|
||||
or-ing 0 or 1 at each bit position, add 1
|
||||
or 2 instead. For example, 1011 is 1 << 0
|
||||
+ 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1
|
||||
+ 1 << 2. You can make any bit pattern
|
||||
that way using 1 less symbol than the basic
|
||||
or 0/1 method (except all bits 0, which
|
||||
would use no symbols, but a run of length 0
|
||||
doesn't mean anything in this context).
|
||||
Thus space is saved. */
|
||||
t += (runPos << nextSym);
|
||||
/* +runPos if RUNA; +2*runPos if RUNB */
|
||||
|
||||
runPos <<= 1;
|
||||
continue;
|
||||
}
|
||||
/* When we hit the first non-run symbol after a run,
|
||||
we now know how many times to repeat the last
|
||||
literal, so append that many copies to our buffer
|
||||
of decoded symbols (dbuf) now. (The last literal
|
||||
used is the one at the head of the mtfSymbol
|
||||
array.) */
|
||||
if (runPos) {
|
||||
runPos = 0;
|
||||
if (dbufCount+t >= dbufSize)
|
||||
return RETVAL_DATA_ERROR;
|
||||
|
||||
uc = symToByte[mtfSymbol[0]];
|
||||
byteCount[uc] += t;
|
||||
while (t--)
|
||||
dbuf[dbufCount++] = uc;
|
||||
}
|
||||
/* Is this the terminating symbol? */
|
||||
if (nextSym > symTotal)
|
||||
break;
|
||||
/* At this point, nextSym indicates a new literal
|
||||
character. Subtract one to get the position in the
|
||||
MTF array at which this literal is currently to be
|
||||
found. (Note that the result can't be -1 or 0,
|
||||
because 0 and 1 are RUNA and RUNB. But another
|
||||
instance of the first symbol in the mtf array,
|
||||
position 0, would have been handled as part of a
|
||||
run above. Therefore 1 unused mtf position minus 2
|
||||
non-literal nextSym values equals -1.) */
|
||||
if (dbufCount >= dbufSize)
|
||||
return RETVAL_DATA_ERROR;
|
||||
i = nextSym - 1;
|
||||
uc = mtfSymbol[i];
|
||||
/* Adjust the MTF array. Since we typically expect to
|
||||
*move only a small number of symbols, and are bound
|
||||
*by 256 in any case, using memmove here would
|
||||
*typically be bigger and slower due to function call
|
||||
*overhead and other assorted setup costs. */
|
||||
do {
|
||||
mtfSymbol[i] = mtfSymbol[i-1];
|
||||
} while (--i);
|
||||
mtfSymbol[0] = uc;
|
||||
uc = symToByte[uc];
|
||||
/* We have our literal byte. Save it into dbuf. */
|
||||
byteCount[uc]++;
|
||||
dbuf[dbufCount++] = (unsigned int)uc;
|
||||
}
|
||||
/* At this point, we've read all the Huffman-coded symbols
|
||||
(and repeated runs) for this block from the input stream,
|
||||
and decoded them into the intermediate buffer. There are
|
||||
dbufCount many decoded bytes in dbuf[]. Now undo the
|
||||
Burrows-Wheeler transform on dbuf. See
|
||||
http://dogma.net/markn/articles/bwt/bwt.htm
|
||||
*/
|
||||
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
|
||||
j = 0;
|
||||
for (i = 0; i < 256; i++) {
|
||||
k = j+byteCount[i];
|
||||
byteCount[i] = j;
|
||||
j = k;
|
||||
}
|
||||
/* Figure out what order dbuf would be in if we sorted it. */
|
||||
for (i = 0; i < dbufCount; i++) {
|
||||
uc = (unsigned char)(dbuf[i] & 0xff);
|
||||
dbuf[byteCount[uc]] |= (i << 8);
|
||||
byteCount[uc]++;
|
||||
}
|
||||
/* Decode first byte by hand to initialize "previous" byte.
|
||||
Note that it doesn't get output, and if the first three
|
||||
characters are identical it doesn't qualify as a run (hence
|
||||
writeRunCountdown = 5). */
|
||||
if (dbufCount) {
|
||||
if (origPtr >= dbufCount)
|
||||
return RETVAL_DATA_ERROR;
|
||||
bd->writePos = dbuf[origPtr];
|
||||
bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
|
||||
bd->writePos >>= 8;
|
||||
bd->writeRunCountdown = 5;
|
||||
}
|
||||
bd->writeCount = dbufCount;
|
||||
|
||||
return RETVAL_OK;
|
||||
}
|
||||
|
||||
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
|
||||
If start_bunzip was initialized with out_fd =-1, then up to len bytes of
|
||||
data are written to outbuf. Return value is number of bytes written or
|
||||
error (all errors are negative numbers). If out_fd!=-1, outbuf and len
|
||||
are ignored, data is written to out_fd and return is RETVAL_OK or error.
|
||||
*/
|
||||
|
||||
static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
|
||||
{
|
||||
const unsigned int *dbuf;
|
||||
int pos, xcurrent, previous, gotcount;
|
||||
|
||||
/* If last read was short due to end of file, return last block now */
|
||||
if (bd->writeCount < 0)
|
||||
return bd->writeCount;
|
||||
|
||||
gotcount = 0;
|
||||
dbuf = bd->dbuf;
|
||||
pos = bd->writePos;
|
||||
xcurrent = bd->writeCurrent;
|
||||
|
||||
/* We will always have pending decoded data to write into the output
|
||||
buffer unless this is the very first call (in which case we haven't
|
||||
Huffman-decoded a block into the intermediate buffer yet). */
|
||||
|
||||
if (bd->writeCopies) {
|
||||
/* Inside the loop, writeCopies means extra copies (beyond 1) */
|
||||
--bd->writeCopies;
|
||||
/* Loop outputting bytes */
|
||||
for (;;) {
|
||||
/* If the output buffer is full, snapshot
|
||||
* state and return */
|
||||
if (gotcount >= len) {
|
||||
bd->writePos = pos;
|
||||
bd->writeCurrent = xcurrent;
|
||||
bd->writeCopies++;
|
||||
return len;
|
||||
}
|
||||
/* Write next byte into output buffer, updating CRC */
|
||||
outbuf[gotcount++] = xcurrent;
|
||||
bd->writeCRC = (((bd->writeCRC) << 8)
|
||||
^bd->crc32Table[((bd->writeCRC) >> 24)
|
||||
^xcurrent]);
|
||||
/* Loop now if we're outputting multiple
|
||||
* copies of this byte */
|
||||
if (bd->writeCopies) {
|
||||
--bd->writeCopies;
|
||||
continue;
|
||||
}
|
||||
decode_next_byte:
|
||||
if (!bd->writeCount--)
|
||||
break;
|
||||
/* Follow sequence vector to undo
|
||||
* Burrows-Wheeler transform */
|
||||
previous = xcurrent;
|
||||
pos = dbuf[pos];
|
||||
xcurrent = pos&0xff;
|
||||
pos >>= 8;
|
||||
/* After 3 consecutive copies of the same
|
||||
byte, the 4th is a repeat count. We count
|
||||
down from 4 instead *of counting up because
|
||||
testing for non-zero is faster */
|
||||
if (--bd->writeRunCountdown) {
|
||||
if (xcurrent != previous)
|
||||
bd->writeRunCountdown = 4;
|
||||
} else {
|
||||
/* We have a repeated run, this byte
|
||||
* indicates the count */
|
||||
bd->writeCopies = xcurrent;
|
||||
xcurrent = previous;
|
||||
bd->writeRunCountdown = 5;
|
||||
/* Sometimes there are just 3 bytes
|
||||
* (run length 0) */
|
||||
if (!bd->writeCopies)
|
||||
goto decode_next_byte;
|
||||
/* Subtract the 1 copy we'd output
|
||||
* anyway to get extras */
|
||||
--bd->writeCopies;
|
||||
}
|
||||
}
|
||||
/* Decompression of this block completed successfully */
|
||||
bd->writeCRC = ~bd->writeCRC;
|
||||
bd->totalCRC = ((bd->totalCRC << 1) |
|
||||
(bd->totalCRC >> 31)) ^ bd->writeCRC;
|
||||
/* If this block had a CRC error, force file level CRC error. */
|
||||
if (bd->writeCRC != bd->headerCRC) {
|
||||
bd->totalCRC = bd->headerCRC+1;
|
||||
return RETVAL_LAST_BLOCK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Refill the intermediate buffer by Huffman-decoding next
|
||||
* block of input */
|
||||
/* (previous is just a convenient unused temp variable here) */
|
||||
previous = get_next_block(bd);
|
||||
if (previous) {
|
||||
bd->writeCount = previous;
|
||||
return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
|
||||
}
|
||||
bd->writeCRC = 0xffffffffUL;
|
||||
pos = bd->writePos;
|
||||
xcurrent = bd->writeCurrent;
|
||||
goto decode_next_byte;
|
||||
}
|
||||
|
||||
static int INIT nofill(void *buf, unsigned int len)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain
|
||||
a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
|
||||
ignored, and data is read from file handle into temporary buffer. */
|
||||
static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len,
|
||||
int (*fill)(void*, unsigned int))
|
||||
{
|
||||
struct bunzip_data *bd;
|
||||
unsigned int i, j, c;
|
||||
const unsigned int BZh0 =
|
||||
(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
|
||||
+(((unsigned int)'h') << 8)+(unsigned int)'0';
|
||||
|
||||
/* Figure out how much data to allocate */
|
||||
i = sizeof(struct bunzip_data);
|
||||
|
||||
/* Allocate bunzip_data. Most fields initialize to zero. */
|
||||
bd = *bdp = malloc(i);
|
||||
memset(bd, 0, sizeof(struct bunzip_data));
|
||||
/* Setup input buffer */
|
||||
bd->inbuf = inbuf;
|
||||
bd->inbufCount = len;
|
||||
if (fill != NULL)
|
||||
bd->fill = fill;
|
||||
else
|
||||
bd->fill = nofill;
|
||||
|
||||
/* Init the CRC32 table (big endian) */
|
||||
for (i = 0; i < 256; i++) {
|
||||
c = i << 24;
|
||||
for (j = 8; j; j--)
|
||||
c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1);
|
||||
bd->crc32Table[i] = c;
|
||||
}
|
||||
|
||||
/* Ensure that file starts with "BZh['1'-'9']." */
|
||||
i = get_bits(bd, 32);
|
||||
if (((unsigned int)(i-BZh0-1)) >= 9)
|
||||
return RETVAL_NOT_BZIP_DATA;
|
||||
|
||||
/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
|
||||
uncompressed data. Allocate intermediate buffer for block. */
|
||||
bd->dbufSize = 100000*(i-BZh0);
|
||||
|
||||
bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
|
||||
return RETVAL_OK;
|
||||
}
|
||||
|
||||
/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data,
|
||||
not end of file.) */
|
||||
STATIC int INIT bunzip2(unsigned char *buf, int len,
|
||||
int(*fill)(void*, unsigned int),
|
||||
int(*flush)(void*, unsigned int),
|
||||
unsigned char *outbuf,
|
||||
int *pos,
|
||||
void(*error_fn)(char *x))
|
||||
{
|
||||
struct bunzip_data *bd;
|
||||
int i = -1;
|
||||
unsigned char *inbuf;
|
||||
|
||||
set_error_fn(error_fn);
|
||||
if (flush)
|
||||
outbuf = malloc(BZIP2_IOBUF_SIZE);
|
||||
else
|
||||
len -= 4; /* Uncompressed size hack active in pre-boot
|
||||
environment */
|
||||
if (!outbuf) {
|
||||
error("Could not allocate output bufer");
|
||||
return -1;
|
||||
}
|
||||
if (buf)
|
||||
inbuf = buf;
|
||||
else
|
||||
inbuf = malloc(BZIP2_IOBUF_SIZE);
|
||||
if (!inbuf) {
|
||||
error("Could not allocate input bufer");
|
||||
goto exit_0;
|
||||
}
|
||||
i = start_bunzip(&bd, inbuf, len, fill);
|
||||
if (!i) {
|
||||
for (;;) {
|
||||
i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
|
||||
if (i <= 0)
|
||||
break;
|
||||
if (!flush)
|
||||
outbuf += i;
|
||||
else
|
||||
if (i != flush(outbuf, i)) {
|
||||
i = RETVAL_UNEXPECTED_OUTPUT_EOF;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Check CRC and release memory */
|
||||
if (i == RETVAL_LAST_BLOCK) {
|
||||
if (bd->headerCRC != bd->totalCRC)
|
||||
error("Data integrity error when decompressing.");
|
||||
else
|
||||
i = RETVAL_OK;
|
||||
} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
|
||||
error("Compressed file ends unexpectedly");
|
||||
}
|
||||
if (bd->dbuf)
|
||||
large_free(bd->dbuf);
|
||||
if (pos)
|
||||
*pos = bd->inbufPos;
|
||||
free(bd);
|
||||
if (!buf)
|
||||
free(inbuf);
|
||||
exit_0:
|
||||
if (flush)
|
||||
free(outbuf);
|
||||
return i;
|
||||
}
|
||||
|
||||
#define decompress bunzip2
|
167
lib/decompress_inflate.c
Normal file
167
lib/decompress_inflate.c
Normal file
@@ -0,0 +1,167 @@
|
||||
#ifdef STATIC
|
||||
/* Pre-boot environment: included */
|
||||
|
||||
/* prevent inclusion of _LINUX_KERNEL_H in pre-boot environment: lots
|
||||
* errors about console_printk etc... on ARM */
|
||||
#define _LINUX_KERNEL_H
|
||||
|
||||
#include "zlib_inflate/inftrees.c"
|
||||
#include "zlib_inflate/inffast.c"
|
||||
#include "zlib_inflate/inflate.c"
|
||||
|
||||
#else /* STATIC */
|
||||
/* initramfs et al: linked */
|
||||
|
||||
#include <linux/zutil.h>
|
||||
|
||||
#include "zlib_inflate/inftrees.h"
|
||||
#include "zlib_inflate/inffast.h"
|
||||
#include "zlib_inflate/inflate.h"
|
||||
|
||||
#include "zlib_inflate/infutil.h"
|
||||
|
||||
#endif /* STATIC */
|
||||
|
||||
#include <linux/decompress/mm.h>
|
||||
|
||||
#define INBUF_LEN (16*1024)
|
||||
|
||||
/* Included from initramfs et al code */
|
||||
STATIC int INIT gunzip(unsigned char *buf, int len,
|
||||
int(*fill)(void*, unsigned int),
|
||||
int(*flush)(void*, unsigned int),
|
||||
unsigned char *out_buf,
|
||||
int *pos,
|
||||
void(*error_fn)(char *x)) {
|
||||
u8 *zbuf;
|
||||
struct z_stream_s *strm;
|
||||
int rc;
|
||||
size_t out_len;
|
||||
|
||||
set_error_fn(error_fn);
|
||||
rc = -1;
|
||||
if (flush) {
|
||||
out_len = 0x8000; /* 32 K */
|
||||
out_buf = malloc(out_len);
|
||||
} else {
|
||||
out_len = 0x7fffffff; /* no limit */
|
||||
}
|
||||
if (!out_buf) {
|
||||
error("Out of memory while allocating output buffer");
|
||||
goto gunzip_nomem1;
|
||||
}
|
||||
|
||||
if (buf)
|
||||
zbuf = buf;
|
||||
else {
|
||||
zbuf = malloc(INBUF_LEN);
|
||||
len = 0;
|
||||
}
|
||||
if (!zbuf) {
|
||||
error("Out of memory while allocating input buffer");
|
||||
goto gunzip_nomem2;
|
||||
}
|
||||
|
||||
strm = malloc(sizeof(*strm));
|
||||
if (strm == NULL) {
|
||||
error("Out of memory while allocating z_stream");
|
||||
goto gunzip_nomem3;
|
||||
}
|
||||
|
||||
strm->workspace = malloc(flush ? zlib_inflate_workspacesize() :
|
||||
sizeof(struct inflate_state));
|
||||
if (strm->workspace == NULL) {
|
||||
error("Out of memory while allocating workspace");
|
||||
goto gunzip_nomem4;
|
||||
}
|
||||
|
||||
if (len == 0)
|
||||
len = fill(zbuf, INBUF_LEN);
|
||||
|
||||
/* verify the gzip header */
|
||||
if (len < 10 ||
|
||||
zbuf[0] != 0x1f || zbuf[1] != 0x8b || zbuf[2] != 0x08) {
|
||||
if (pos)
|
||||
*pos = 0;
|
||||
error("Not a gzip file");
|
||||
goto gunzip_5;
|
||||
}
|
||||
|
||||
/* skip over gzip header (1f,8b,08... 10 bytes total +
|
||||
* possible asciz filename)
|
||||
*/
|
||||
strm->next_in = zbuf + 10;
|
||||
/* skip over asciz filename */
|
||||
if (zbuf[3] & 0x8) {
|
||||
while (strm->next_in[0])
|
||||
strm->next_in++;
|
||||
strm->next_in++;
|
||||
}
|
||||
strm->avail_in = len - (strm->next_in - zbuf);
|
||||
|
||||
strm->next_out = out_buf;
|
||||
strm->avail_out = out_len;
|
||||
|
||||
rc = zlib_inflateInit2(strm, -MAX_WBITS);
|
||||
|
||||
if (!flush) {
|
||||
WS(strm)->inflate_state.wsize = 0;
|
||||
WS(strm)->inflate_state.window = NULL;
|
||||
}
|
||||
|
||||
while (rc == Z_OK) {
|
||||
if (strm->avail_in == 0) {
|
||||
/* TODO: handle case where both pos and fill are set */
|
||||
len = fill(zbuf, INBUF_LEN);
|
||||
if (len < 0) {
|
||||
rc = -1;
|
||||
error("read error");
|
||||
break;
|
||||
}
|
||||
strm->next_in = zbuf;
|
||||
strm->avail_in = len;
|
||||
}
|
||||
rc = zlib_inflate(strm, 0);
|
||||
|
||||
/* Write any data generated */
|
||||
if (flush && strm->next_out > out_buf) {
|
||||
int l = strm->next_out - out_buf;
|
||||
if (l != flush(out_buf, l)) {
|
||||
rc = -1;
|
||||
error("write error");
|
||||
break;
|
||||
}
|
||||
strm->next_out = out_buf;
|
||||
strm->avail_out = out_len;
|
||||
}
|
||||
|
||||
/* after Z_FINISH, only Z_STREAM_END is "we unpacked it all" */
|
||||
if (rc == Z_STREAM_END) {
|
||||
rc = 0;
|
||||
break;
|
||||
} else if (rc != Z_OK) {
|
||||
error("uncompression error");
|
||||
rc = -1;
|
||||
}
|
||||
}
|
||||
|
||||
zlib_inflateEnd(strm);
|
||||
if (pos)
|
||||
/* add + 8 to skip over trailer */
|
||||
*pos = strm->next_in - zbuf+8;
|
||||
|
||||
gunzip_5:
|
||||
free(strm->workspace);
|
||||
gunzip_nomem4:
|
||||
free(strm);
|
||||
gunzip_nomem3:
|
||||
if (!buf)
|
||||
free(zbuf);
|
||||
gunzip_nomem2:
|
||||
if (flush)
|
||||
free(out_buf);
|
||||
gunzip_nomem1:
|
||||
return rc; /* returns Z_OK (0) if successful */
|
||||
}
|
||||
|
||||
#define decompress gunzip
|
647
lib/decompress_unlzma.c
Normal file
647
lib/decompress_unlzma.c
Normal file
@@ -0,0 +1,647 @@
|
||||
/* Lzma decompressor for Linux kernel. Shamelessly snarfed
|
||||
*from busybox 1.1.1
|
||||
*
|
||||
*Linux kernel adaptation
|
||||
*Copyright (C) 2006 Alain < alain@knaff.lu >
|
||||
*
|
||||
*Based on small lzma deflate implementation/Small range coder
|
||||
*implementation for lzma.
|
||||
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
||||
*
|
||||
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
||||
*Copyright (C) 1999-2005 Igor Pavlov
|
||||
*
|
||||
*Copyrights of the parts, see headers below.
|
||||
*
|
||||
*
|
||||
*This program is free software; you can redistribute it and/or
|
||||
*modify it under the terms of the GNU Lesser General Public
|
||||
*License as published by the Free Software Foundation; either
|
||||
*version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
*This program is distributed in the hope that it will be useful,
|
||||
*but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
*Lesser General Public License for more details.
|
||||
*
|
||||
*You should have received a copy of the GNU Lesser General Public
|
||||
*License along with this library; if not, write to the Free Software
|
||||
*Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef STATIC
|
||||
#include <linux/decompress/unlzma.h>
|
||||
#endif /* STATIC */
|
||||
|
||||
#include <linux/decompress/mm.h>
|
||||
|
||||
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
|
||||
|
||||
static long long INIT read_int(unsigned char *ptr, int size)
|
||||
{
|
||||
int i;
|
||||
long long ret = 0;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
ret = (ret << 8) | ptr[size-i-1];
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define ENDIAN_CONVERT(x) \
|
||||
x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
|
||||
|
||||
|
||||
/* Small range coder implementation for lzma.
|
||||
*Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
||||
*
|
||||
*Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
||||
*Copyright (c) 1999-2005 Igor Pavlov
|
||||
*/
|
||||
|
||||
#include <linux/compiler.h>
|
||||
|
||||
#define LZMA_IOBUF_SIZE 0x10000
|
||||
|
||||
struct rc {
|
||||
int (*fill)(void*, unsigned int);
|
||||
uint8_t *ptr;
|
||||
uint8_t *buffer;
|
||||
uint8_t *buffer_end;
|
||||
int buffer_size;
|
||||
uint32_t code;
|
||||
uint32_t range;
|
||||
uint32_t bound;
|
||||
};
|
||||
|
||||
|
||||
#define RC_TOP_BITS 24
|
||||
#define RC_MOVE_BITS 5
|
||||
#define RC_MODEL_TOTAL_BITS 11
|
||||
|
||||
|
||||
/* Called twice: once at startup and once in rc_normalize() */
|
||||
static void INIT rc_read(struct rc *rc)
|
||||
{
|
||||
rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
|
||||
if (rc->buffer_size <= 0)
|
||||
error("unexpected EOF");
|
||||
rc->ptr = rc->buffer;
|
||||
rc->buffer_end = rc->buffer + rc->buffer_size;
|
||||
}
|
||||
|
||||
/* Called once */
|
||||
static inline void INIT rc_init(struct rc *rc,
|
||||
int (*fill)(void*, unsigned int),
|
||||
char *buffer, int buffer_size)
|
||||
{
|
||||
rc->fill = fill;
|
||||
rc->buffer = (uint8_t *)buffer;
|
||||
rc->buffer_size = buffer_size;
|
||||
rc->buffer_end = rc->buffer + rc->buffer_size;
|
||||
rc->ptr = rc->buffer;
|
||||
|
||||
rc->code = 0;
|
||||
rc->range = 0xFFFFFFFF;
|
||||
}
|
||||
|
||||
static inline void INIT rc_init_code(struct rc *rc)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 5; i++) {
|
||||
if (rc->ptr >= rc->buffer_end)
|
||||
rc_read(rc);
|
||||
rc->code = (rc->code << 8) | *rc->ptr++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Called once. TODO: bb_maybe_free() */
|
||||
static inline void INIT rc_free(struct rc *rc)
|
||||
{
|
||||
free(rc->buffer);
|
||||
}
|
||||
|
||||
/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
|
||||
static void INIT rc_do_normalize(struct rc *rc)
|
||||
{
|
||||
if (rc->ptr >= rc->buffer_end)
|
||||
rc_read(rc);
|
||||
rc->range <<= 8;
|
||||
rc->code = (rc->code << 8) | *rc->ptr++;
|
||||
}
|
||||
static inline void INIT rc_normalize(struct rc *rc)
|
||||
{
|
||||
if (rc->range < (1 << RC_TOP_BITS))
|
||||
rc_do_normalize(rc);
|
||||
}
|
||||
|
||||
/* Called 9 times */
|
||||
/* Why rc_is_bit_0_helper exists?
|
||||
*Because we want to always expose (rc->code < rc->bound) to optimizer
|
||||
*/
|
||||
static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
|
||||
{
|
||||
rc_normalize(rc);
|
||||
rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
|
||||
return rc->bound;
|
||||
}
|
||||
static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
|
||||
{
|
||||
uint32_t t = rc_is_bit_0_helper(rc, p);
|
||||
return rc->code < t;
|
||||
}
|
||||
|
||||
/* Called ~10 times, but very small, thus inlined */
|
||||
static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
|
||||
{
|
||||
rc->range = rc->bound;
|
||||
*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
|
||||
}
|
||||
static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
|
||||
{
|
||||
rc->range -= rc->bound;
|
||||
rc->code -= rc->bound;
|
||||
*p -= *p >> RC_MOVE_BITS;
|
||||
}
|
||||
|
||||
/* Called 4 times in unlzma loop */
|
||||
static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
|
||||
{
|
||||
if (rc_is_bit_0(rc, p)) {
|
||||
rc_update_bit_0(rc, p);
|
||||
*symbol *= 2;
|
||||
return 0;
|
||||
} else {
|
||||
rc_update_bit_1(rc, p);
|
||||
*symbol = *symbol * 2 + 1;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Called once */
|
||||
static inline int INIT rc_direct_bit(struct rc *rc)
|
||||
{
|
||||
rc_normalize(rc);
|
||||
rc->range >>= 1;
|
||||
if (rc->code >= rc->range) {
|
||||
rc->code -= rc->range;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Called twice */
|
||||
static inline void INIT
|
||||
rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
|
||||
{
|
||||
int i = num_levels;
|
||||
|
||||
*symbol = 1;
|
||||
while (i--)
|
||||
rc_get_bit(rc, p + *symbol, symbol);
|
||||
*symbol -= 1 << num_levels;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Small lzma deflate implementation.
|
||||
* Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
|
||||
*
|
||||
* Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
||||
* Copyright (C) 1999-2005 Igor Pavlov
|
||||
*/
|
||||
|
||||
|
||||
struct lzma_header {
|
||||
uint8_t pos;
|
||||
uint32_t dict_size;
|
||||
uint64_t dst_size;
|
||||
} __attribute__ ((packed)) ;
|
||||
|
||||
|
||||
#define LZMA_BASE_SIZE 1846
|
||||
#define LZMA_LIT_SIZE 768
|
||||
|
||||
#define LZMA_NUM_POS_BITS_MAX 4
|
||||
|
||||
#define LZMA_LEN_NUM_LOW_BITS 3
|
||||
#define LZMA_LEN_NUM_MID_BITS 3
|
||||
#define LZMA_LEN_NUM_HIGH_BITS 8
|
||||
|
||||
#define LZMA_LEN_CHOICE 0
|
||||
#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
|
||||
#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
|
||||
#define LZMA_LEN_MID (LZMA_LEN_LOW \
|
||||
+ (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
|
||||
#define LZMA_LEN_HIGH (LZMA_LEN_MID \
|
||||
+(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
|
||||
#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
|
||||
|
||||
#define LZMA_NUM_STATES 12
|
||||
#define LZMA_NUM_LIT_STATES 7
|
||||
|
||||
#define LZMA_START_POS_MODEL_INDEX 4
|
||||
#define LZMA_END_POS_MODEL_INDEX 14
|
||||
#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
|
||||
|
||||
#define LZMA_NUM_POS_SLOT_BITS 6
|
||||
#define LZMA_NUM_LEN_TO_POS_STATES 4
|
||||
|
||||
#define LZMA_NUM_ALIGN_BITS 4
|
||||
|
||||
#define LZMA_MATCH_MIN_LEN 2
|
||||
|
||||
#define LZMA_IS_MATCH 0
|
||||
#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
||||
#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
|
||||
#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
|
||||
#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
|
||||
#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
|
||||
#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
|
||||
+ (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
||||
#define LZMA_SPEC_POS (LZMA_POS_SLOT \
|
||||
+(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
|
||||
#define LZMA_ALIGN (LZMA_SPEC_POS \
|
||||
+ LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
|
||||
#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
|
||||
#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
||||
#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
||||
|
||||
|
||||
struct writer {
|
||||
uint8_t *buffer;
|
||||
uint8_t previous_byte;
|
||||
size_t buffer_pos;
|
||||
int bufsize;
|
||||
size_t global_pos;
|
||||
int(*flush)(void*, unsigned int);
|
||||
struct lzma_header *header;
|
||||
};
|
||||
|
||||
struct cstate {
|
||||
int state;
|
||||
uint32_t rep0, rep1, rep2, rep3;
|
||||
};
|
||||
|
||||
static inline size_t INIT get_pos(struct writer *wr)
|
||||
{
|
||||
return
|
||||
wr->global_pos + wr->buffer_pos;
|
||||
}
|
||||
|
||||
static inline uint8_t INIT peek_old_byte(struct writer *wr,
|
||||
uint32_t offs)
|
||||
{
|
||||
if (!wr->flush) {
|
||||
int32_t pos;
|
||||
while (offs > wr->header->dict_size)
|
||||
offs -= wr->header->dict_size;
|
||||
pos = wr->buffer_pos - offs;
|
||||
return wr->buffer[pos];
|
||||
} else {
|
||||
uint32_t pos = wr->buffer_pos - offs;
|
||||
while (pos >= wr->header->dict_size)
|
||||
pos += wr->header->dict_size;
|
||||
return wr->buffer[pos];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static inline void INIT write_byte(struct writer *wr, uint8_t byte)
|
||||
{
|
||||
wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
|
||||
if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
|
||||
wr->buffer_pos = 0;
|
||||
wr->global_pos += wr->header->dict_size;
|
||||
wr->flush((char *)wr->buffer, wr->header->dict_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
|
||||
{
|
||||
write_byte(wr, peek_old_byte(wr, offs));
|
||||
}
|
||||
|
||||
static inline void INIT copy_bytes(struct writer *wr,
|
||||
uint32_t rep0, int len)
|
||||
{
|
||||
do {
|
||||
copy_byte(wr, rep0);
|
||||
len--;
|
||||
} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
|
||||
}
|
||||
|
||||
static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
|
||||
struct cstate *cst, uint16_t *p,
|
||||
int pos_state, uint16_t *prob,
|
||||
int lc, uint32_t literal_pos_mask) {
|
||||
int mi = 1;
|
||||
rc_update_bit_0(rc, prob);
|
||||
prob = (p + LZMA_LITERAL +
|
||||
(LZMA_LIT_SIZE
|
||||
* (((get_pos(wr) & literal_pos_mask) << lc)
|
||||
+ (wr->previous_byte >> (8 - lc))))
|
||||
);
|
||||
|
||||
if (cst->state >= LZMA_NUM_LIT_STATES) {
|
||||
int match_byte = peek_old_byte(wr, cst->rep0);
|
||||
do {
|
||||
int bit;
|
||||
uint16_t *prob_lit;
|
||||
|
||||
match_byte <<= 1;
|
||||
bit = match_byte & 0x100;
|
||||
prob_lit = prob + 0x100 + bit + mi;
|
||||
if (rc_get_bit(rc, prob_lit, &mi)) {
|
||||
if (!bit)
|
||||
break;
|
||||
} else {
|
||||
if (bit)
|
||||
break;
|
||||
}
|
||||
} while (mi < 0x100);
|
||||
}
|
||||
while (mi < 0x100) {
|
||||
uint16_t *prob_lit = prob + mi;
|
||||
rc_get_bit(rc, prob_lit, &mi);
|
||||
}
|
||||
write_byte(wr, mi);
|
||||
if (cst->state < 4)
|
||||
cst->state = 0;
|
||||
else if (cst->state < 10)
|
||||
cst->state -= 3;
|
||||
else
|
||||
cst->state -= 6;
|
||||
}
|
||||
|
||||
static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
|
||||
struct cstate *cst, uint16_t *p,
|
||||
int pos_state, uint16_t *prob) {
|
||||
int offset;
|
||||
uint16_t *prob_len;
|
||||
int num_bits;
|
||||
int len;
|
||||
|
||||
rc_update_bit_1(rc, prob);
|
||||
prob = p + LZMA_IS_REP + cst->state;
|
||||
if (rc_is_bit_0(rc, prob)) {
|
||||
rc_update_bit_0(rc, prob);
|
||||
cst->rep3 = cst->rep2;
|
||||
cst->rep2 = cst->rep1;
|
||||
cst->rep1 = cst->rep0;
|
||||
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
|
||||
prob = p + LZMA_LEN_CODER;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob);
|
||||
prob = p + LZMA_IS_REP_G0 + cst->state;
|
||||
if (rc_is_bit_0(rc, prob)) {
|
||||
rc_update_bit_0(rc, prob);
|
||||
prob = (p + LZMA_IS_REP_0_LONG
|
||||
+ (cst->state <<
|
||||
LZMA_NUM_POS_BITS_MAX) +
|
||||
pos_state);
|
||||
if (rc_is_bit_0(rc, prob)) {
|
||||
rc_update_bit_0(rc, prob);
|
||||
|
||||
cst->state = cst->state < LZMA_NUM_LIT_STATES ?
|
||||
9 : 11;
|
||||
copy_byte(wr, cst->rep0);
|
||||
return;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob);
|
||||
}
|
||||
} else {
|
||||
uint32_t distance;
|
||||
|
||||
rc_update_bit_1(rc, prob);
|
||||
prob = p + LZMA_IS_REP_G1 + cst->state;
|
||||
if (rc_is_bit_0(rc, prob)) {
|
||||
rc_update_bit_0(rc, prob);
|
||||
distance = cst->rep1;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob);
|
||||
prob = p + LZMA_IS_REP_G2 + cst->state;
|
||||
if (rc_is_bit_0(rc, prob)) {
|
||||
rc_update_bit_0(rc, prob);
|
||||
distance = cst->rep2;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob);
|
||||
distance = cst->rep3;
|
||||
cst->rep3 = cst->rep2;
|
||||
}
|
||||
cst->rep2 = cst->rep1;
|
||||
}
|
||||
cst->rep1 = cst->rep0;
|
||||
cst->rep0 = distance;
|
||||
}
|
||||
cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
|
||||
prob = p + LZMA_REP_LEN_CODER;
|
||||
}
|
||||
|
||||
prob_len = prob + LZMA_LEN_CHOICE;
|
||||
if (rc_is_bit_0(rc, prob_len)) {
|
||||
rc_update_bit_0(rc, prob_len);
|
||||
prob_len = (prob + LZMA_LEN_LOW
|
||||
+ (pos_state <<
|
||||
LZMA_LEN_NUM_LOW_BITS));
|
||||
offset = 0;
|
||||
num_bits = LZMA_LEN_NUM_LOW_BITS;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob_len);
|
||||
prob_len = prob + LZMA_LEN_CHOICE_2;
|
||||
if (rc_is_bit_0(rc, prob_len)) {
|
||||
rc_update_bit_0(rc, prob_len);
|
||||
prob_len = (prob + LZMA_LEN_MID
|
||||
+ (pos_state <<
|
||||
LZMA_LEN_NUM_MID_BITS));
|
||||
offset = 1 << LZMA_LEN_NUM_LOW_BITS;
|
||||
num_bits = LZMA_LEN_NUM_MID_BITS;
|
||||
} else {
|
||||
rc_update_bit_1(rc, prob_len);
|
||||
prob_len = prob + LZMA_LEN_HIGH;
|
||||
offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
|
||||
+ (1 << LZMA_LEN_NUM_MID_BITS));
|
||||
num_bits = LZMA_LEN_NUM_HIGH_BITS;
|
||||
}
|
||||
}
|
||||
|
||||
rc_bit_tree_decode(rc, prob_len, num_bits, &len);
|
||||
len += offset;
|
||||
|
||||
if (cst->state < 4) {
|
||||
int pos_slot;
|
||||
|
||||
cst->state += LZMA_NUM_LIT_STATES;
|
||||
prob =
|
||||
p + LZMA_POS_SLOT +
|
||||
((len <
|
||||
LZMA_NUM_LEN_TO_POS_STATES ? len :
|
||||
LZMA_NUM_LEN_TO_POS_STATES - 1)
|
||||
<< LZMA_NUM_POS_SLOT_BITS);
|
||||
rc_bit_tree_decode(rc, prob,
|
||||
LZMA_NUM_POS_SLOT_BITS,
|
||||
&pos_slot);
|
||||
if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
|
||||
int i, mi;
|
||||
num_bits = (pos_slot >> 1) - 1;
|
||||
cst->rep0 = 2 | (pos_slot & 1);
|
||||
if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
|
||||
cst->rep0 <<= num_bits;
|
||||
prob = p + LZMA_SPEC_POS +
|
||||
cst->rep0 - pos_slot - 1;
|
||||
} else {
|
||||
num_bits -= LZMA_NUM_ALIGN_BITS;
|
||||
while (num_bits--)
|
||||
cst->rep0 = (cst->rep0 << 1) |
|
||||
rc_direct_bit(rc);
|
||||
prob = p + LZMA_ALIGN;
|
||||
cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
|
||||
num_bits = LZMA_NUM_ALIGN_BITS;
|
||||
}
|
||||
i = 1;
|
||||
mi = 1;
|
||||
while (num_bits--) {
|
||||
if (rc_get_bit(rc, prob + mi, &mi))
|
||||
cst->rep0 |= i;
|
||||
i <<= 1;
|
||||
}
|
||||
} else
|
||||
cst->rep0 = pos_slot;
|
||||
if (++(cst->rep0) == 0)
|
||||
return;
|
||||
}
|
||||
|
||||
len += LZMA_MATCH_MIN_LEN;
|
||||
|
||||
copy_bytes(wr, cst->rep0, len);
|
||||
}
|
||||
|
||||
|
||||
|
||||
STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
|
||||
int(*fill)(void*, unsigned int),
|
||||
int(*flush)(void*, unsigned int),
|
||||
unsigned char *output,
|
||||
int *posp,
|
||||
void(*error_fn)(char *x)
|
||||
)
|
||||
{
|
||||
struct lzma_header header;
|
||||
int lc, pb, lp;
|
||||
uint32_t pos_state_mask;
|
||||
uint32_t literal_pos_mask;
|
||||
uint16_t *p;
|
||||
int num_probs;
|
||||
struct rc rc;
|
||||
int i, mi;
|
||||
struct writer wr;
|
||||
struct cstate cst;
|
||||
unsigned char *inbuf;
|
||||
int ret = -1;
|
||||
|
||||
set_error_fn(error_fn);
|
||||
if (!flush)
|
||||
in_len -= 4; /* Uncompressed size hack active in pre-boot
|
||||
environment */
|
||||
if (buf)
|
||||
inbuf = buf;
|
||||
else
|
||||
inbuf = malloc(LZMA_IOBUF_SIZE);
|
||||
if (!inbuf) {
|
||||
error("Could not allocate input bufer");
|
||||
goto exit_0;
|
||||
}
|
||||
|
||||
cst.state = 0;
|
||||
cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
|
||||
|
||||
wr.header = &header;
|
||||
wr.flush = flush;
|
||||
wr.global_pos = 0;
|
||||
wr.previous_byte = 0;
|
||||
wr.buffer_pos = 0;
|
||||
|
||||
rc_init(&rc, fill, inbuf, in_len);
|
||||
|
||||
for (i = 0; i < sizeof(header); i++) {
|
||||
if (rc.ptr >= rc.buffer_end)
|
||||
rc_read(&rc);
|
||||
((unsigned char *)&header)[i] = *rc.ptr++;
|
||||
}
|
||||
|
||||
if (header.pos >= (9 * 5 * 5))
|
||||
error("bad header");
|
||||
|
||||
mi = 0;
|
||||
lc = header.pos;
|
||||
while (lc >= 9) {
|
||||
mi++;
|
||||
lc -= 9;
|
||||
}
|
||||
pb = 0;
|
||||
lp = mi;
|
||||
while (lp >= 5) {
|
||||
pb++;
|
||||
lp -= 5;
|
||||
}
|
||||
pos_state_mask = (1 << pb) - 1;
|
||||
literal_pos_mask = (1 << lp) - 1;
|
||||
|
||||
ENDIAN_CONVERT(header.dict_size);
|
||||
ENDIAN_CONVERT(header.dst_size);
|
||||
|
||||
if (header.dict_size == 0)
|
||||
header.dict_size = 1;
|
||||
|
||||
if (output)
|
||||
wr.buffer = output;
|
||||
else {
|
||||
wr.bufsize = MIN(header.dst_size, header.dict_size);
|
||||
wr.buffer = large_malloc(wr.bufsize);
|
||||
}
|
||||
if (wr.buffer == NULL)
|
||||
goto exit_1;
|
||||
|
||||
num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
|
||||
p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
|
||||
if (p == 0)
|
||||
goto exit_2;
|
||||
num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
|
||||
for (i = 0; i < num_probs; i++)
|
||||
p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
|
||||
|
||||
rc_init_code(&rc);
|
||||
|
||||
while (get_pos(&wr) < header.dst_size) {
|
||||
int pos_state = get_pos(&wr) & pos_state_mask;
|
||||
uint16_t *prob = p + LZMA_IS_MATCH +
|
||||
(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
|
||||
if (rc_is_bit_0(&rc, prob))
|
||||
process_bit0(&wr, &rc, &cst, p, pos_state, prob,
|
||||
lc, literal_pos_mask);
|
||||
else {
|
||||
process_bit1(&wr, &rc, &cst, p, pos_state, prob);
|
||||
if (cst.rep0 == 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (posp)
|
||||
*posp = rc.ptr-rc.buffer;
|
||||
if (wr.flush)
|
||||
wr.flush(wr.buffer, wr.buffer_pos);
|
||||
ret = 0;
|
||||
large_free(p);
|
||||
exit_2:
|
||||
if (!output)
|
||||
large_free(wr.buffer);
|
||||
exit_1:
|
||||
if (!buf)
|
||||
free(inbuf);
|
||||
exit_0:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define decompress unlzma
|
@@ -1,3 +1,6 @@
|
||||
#ifndef INFLATE_H
|
||||
#define INFLATE_H
|
||||
|
||||
/* inflate.h -- internal inflate state definition
|
||||
* Copyright (C) 1995-2004 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
@@ -105,3 +108,4 @@ struct inflate_state {
|
||||
unsigned short work[288]; /* work area for code table building */
|
||||
code codes[ENOUGH]; /* space for code tables */
|
||||
};
|
||||
#endif
|
||||
|
@@ -1,3 +1,6 @@
|
||||
#ifndef INFTREES_H
|
||||
#define INFTREES_H
|
||||
|
||||
/* inftrees.h -- header to use inftrees.c
|
||||
* Copyright (C) 1995-2005 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
@@ -53,3 +56,4 @@ typedef enum {
|
||||
extern int zlib_inflate_table (codetype type, unsigned short *lens,
|
||||
unsigned codes, code **table,
|
||||
unsigned *bits, unsigned short *work);
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user