Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest

* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest: (31 commits)
  lguest: add support for indirect ring entries
  lguest: suppress notifications in example Launcher
  lguest: try to batch interrupts on network receive
  lguest: avoid sending interrupts to Guest when no activity occurs.
  lguest: implement deferred interrupts in example Launcher
  lguest: remove obsolete LHREQ_BREAK call
  lguest: have example Launcher service all devices in separate threads
  lguest: use eventfds for device notification
  eventfd: export eventfd_signal and eventfd_fget for lguest
  lguest: allow any process to send interrupts
  lguest: PAE fixes
  lguest: PAE support
  lguest: Add support for kvm_hypercall4()
  lguest: replace hypercall name LHCALL_SET_PMD with LHCALL_SET_PGD
  lguest: use native_set_* macros, which properly handle 64-bit entries when PAE is activated
  lguest: map switcher with executable page table entries
  lguest: fix writev returning short on console output
  lguest: clean up length-used value in example launcher
  lguest: Segment selectors are 16-bit long. Fix lg_cpu.ss1 definition.
  lguest: beyond ARRAY_SIZE of cpu->arch.gdt
  ...
This commit is contained in:
Linus Torvalds
2009-06-12 09:32:26 -07:00
21 changed files with 1107 additions and 822 deletions

View File

@@ -1,6 +1,5 @@
# This creates the demonstration utility "lguest" which runs a Linux guest. # This creates the demonstration utility "lguest" which runs a Linux guest.
CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE
LDLIBS:=-lz
all: lguest all: lguest

File diff suppressed because it is too large Load Diff

View File

@@ -37,7 +37,6 @@ Running Lguest:
"Paravirtualized guest support" = Y "Paravirtualized guest support" = Y
"Lguest guest support" = Y "Lguest guest support" = Y
"High Memory Support" = off/4GB "High Memory Support" = off/4GB
"PAE (Physical Address Extension) Support" = N
"Alignment value to which kernel should be aligned" = 0x100000 "Alignment value to which kernel should be aligned" = 0x100000
(CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and (CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and
CONFIG_PHYSICAL_ALIGN=0x100000) CONFIG_PHYSICAL_ALIGN=0x100000)

View File

@@ -17,8 +17,13 @@
/* Pages for switcher itself, then two pages per cpu */ /* Pages for switcher itself, then two pages per cpu */
#define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * nr_cpu_ids) #define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * nr_cpu_ids)
/* We map at -4M for ease of mapping into the guest (one PTE page). */ /* We map at -4M (-2M when PAE is activated) for ease of mapping
* into the guest (one PTE page). */
#ifdef CONFIG_X86_PAE
#define SWITCHER_ADDR 0xFFE00000
#else
#define SWITCHER_ADDR 0xFFC00000 #define SWITCHER_ADDR 0xFFC00000
#endif
/* Found in switcher.S */ /* Found in switcher.S */
extern unsigned long default_idt_entries[]; extern unsigned long default_idt_entries[];

View File

@@ -12,11 +12,13 @@
#define LHCALL_TS 8 #define LHCALL_TS 8
#define LHCALL_SET_CLOCKEVENT 9 #define LHCALL_SET_CLOCKEVENT 9
#define LHCALL_HALT 10 #define LHCALL_HALT 10
#define LHCALL_SET_PMD 13
#define LHCALL_SET_PTE 14 #define LHCALL_SET_PTE 14
#define LHCALL_SET_PMD 15 #define LHCALL_SET_PGD 15
#define LHCALL_LOAD_TLS 16 #define LHCALL_LOAD_TLS 16
#define LHCALL_NOTIFY 17 #define LHCALL_NOTIFY 17
#define LHCALL_LOAD_GDT_ENTRY 18 #define LHCALL_LOAD_GDT_ENTRY 18
#define LHCALL_SEND_INTERRUPTS 19
#define LGUEST_TRAP_ENTRY 0x1F #define LGUEST_TRAP_ENTRY 0x1F
@@ -32,10 +34,10 @@
* operations? There are two ways: the direct way is to make a "hypercall", * operations? There are two ways: the direct way is to make a "hypercall",
* to make requests of the Host Itself. * to make requests of the Host Itself.
* *
* We use the KVM hypercall mechanism. Eighteen hypercalls are * We use the KVM hypercall mechanism. Seventeen hypercalls are
* available: the hypercall number is put in the %eax register, and the * available: the hypercall number is put in the %eax register, and the
* arguments (when required) are placed in %ebx, %ecx and %edx. If a return * arguments (when required) are placed in %ebx, %ecx, %edx and %esi.
* value makes sense, it's returned in %eax. * If a return value makes sense, it's returned in %eax.
* *
* Grossly invalid calls result in Sudden Death at the hands of the vengeful * Grossly invalid calls result in Sudden Death at the hands of the vengeful
* Host, rather than returning failure. This reflects Winston Churchill's * Host, rather than returning failure. This reflects Winston Churchill's
@@ -47,8 +49,9 @@
#define LHCALL_RING_SIZE 64 #define LHCALL_RING_SIZE 64
struct hcall_args { struct hcall_args {
/* These map directly onto eax, ebx, ecx, edx in struct lguest_regs */ /* These map directly onto eax, ebx, ecx, edx and esi
unsigned long arg0, arg1, arg2, arg3; * in struct lguest_regs */
unsigned long arg0, arg1, arg2, arg3, arg4;
}; };
#endif /* !__ASSEMBLY__ */ #endif /* !__ASSEMBLY__ */

View File

@@ -126,6 +126,7 @@ void foo(void)
#if defined(CONFIG_LGUEST) || defined(CONFIG_LGUEST_GUEST) || defined(CONFIG_LGUEST_MODULE) #if defined(CONFIG_LGUEST) || defined(CONFIG_LGUEST_GUEST) || defined(CONFIG_LGUEST_MODULE)
BLANK(); BLANK();
OFFSET(LGUEST_DATA_irq_enabled, lguest_data, irq_enabled); OFFSET(LGUEST_DATA_irq_enabled, lguest_data, irq_enabled);
OFFSET(LGUEST_DATA_irq_pending, lguest_data, irq_pending);
OFFSET(LGUEST_DATA_pgdir, lguest_data, pgdir); OFFSET(LGUEST_DATA_pgdir, lguest_data, pgdir);
BLANK(); BLANK();

View File

@@ -2,7 +2,6 @@ config LGUEST_GUEST
bool "Lguest guest support" bool "Lguest guest support"
select PARAVIRT select PARAVIRT
depends on X86_32 depends on X86_32
depends on !X86_PAE
select VIRTIO select VIRTIO
select VIRTIO_RING select VIRTIO_RING
select VIRTIO_CONSOLE select VIRTIO_CONSOLE

View File

@@ -87,7 +87,7 @@ struct lguest_data lguest_data = {
/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a /*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
* ring buffer of stored hypercalls which the Host will run though next time we * ring buffer of stored hypercalls which the Host will run though next time we
* do a normal hypercall. Each entry in the ring has 4 slots for the hypercall * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
* arguments, and a "hcall_status" word which is 0 if the call is ready to go, * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
* and 255 once the Host has finished with it. * and 255 once the Host has finished with it.
* *
@@ -96,7 +96,8 @@ struct lguest_data lguest_data = {
* effect of causing the Host to run all the stored calls in the ring buffer * effect of causing the Host to run all the stored calls in the ring buffer
* which empties it for next time! */ * which empties it for next time! */
static void async_hcall(unsigned long call, unsigned long arg1, static void async_hcall(unsigned long call, unsigned long arg1,
unsigned long arg2, unsigned long arg3) unsigned long arg2, unsigned long arg3,
unsigned long arg4)
{ {
/* Note: This code assumes we're uniprocessor. */ /* Note: This code assumes we're uniprocessor. */
static unsigned int next_call; static unsigned int next_call;
@@ -108,12 +109,13 @@ static void async_hcall(unsigned long call, unsigned long arg1,
local_irq_save(flags); local_irq_save(flags);
if (lguest_data.hcall_status[next_call] != 0xFF) { if (lguest_data.hcall_status[next_call] != 0xFF) {
/* Table full, so do normal hcall which will flush table. */ /* Table full, so do normal hcall which will flush table. */
kvm_hypercall3(call, arg1, arg2, arg3); kvm_hypercall4(call, arg1, arg2, arg3, arg4);
} else { } else {
lguest_data.hcalls[next_call].arg0 = call; lguest_data.hcalls[next_call].arg0 = call;
lguest_data.hcalls[next_call].arg1 = arg1; lguest_data.hcalls[next_call].arg1 = arg1;
lguest_data.hcalls[next_call].arg2 = arg2; lguest_data.hcalls[next_call].arg2 = arg2;
lguest_data.hcalls[next_call].arg3 = arg3; lguest_data.hcalls[next_call].arg3 = arg3;
lguest_data.hcalls[next_call].arg4 = arg4;
/* Arguments must all be written before we mark it to go */ /* Arguments must all be written before we mark it to go */
wmb(); wmb();
lguest_data.hcall_status[next_call] = 0; lguest_data.hcall_status[next_call] = 0;
@@ -141,7 +143,7 @@ static void lazy_hcall1(unsigned long call,
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE) if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
kvm_hypercall1(call, arg1); kvm_hypercall1(call, arg1);
else else
async_hcall(call, arg1, 0, 0); async_hcall(call, arg1, 0, 0, 0);
} }
static void lazy_hcall2(unsigned long call, static void lazy_hcall2(unsigned long call,
@@ -151,7 +153,7 @@ static void lazy_hcall2(unsigned long call,
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE) if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
kvm_hypercall2(call, arg1, arg2); kvm_hypercall2(call, arg1, arg2);
else else
async_hcall(call, arg1, arg2, 0); async_hcall(call, arg1, arg2, 0, 0);
} }
static void lazy_hcall3(unsigned long call, static void lazy_hcall3(unsigned long call,
@@ -162,9 +164,23 @@ static void lazy_hcall3(unsigned long call,
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE) if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
kvm_hypercall3(call, arg1, arg2, arg3); kvm_hypercall3(call, arg1, arg2, arg3);
else else
async_hcall(call, arg1, arg2, arg3); async_hcall(call, arg1, arg2, arg3, 0);
} }
#ifdef CONFIG_X86_PAE
static void lazy_hcall4(unsigned long call,
unsigned long arg1,
unsigned long arg2,
unsigned long arg3,
unsigned long arg4)
{
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
kvm_hypercall4(call, arg1, arg2, arg3, arg4);
else
async_hcall(call, arg1, arg2, arg3, arg4);
}
#endif
/* When lazy mode is turned off reset the per-cpu lazy mode variable and then /* When lazy mode is turned off reset the per-cpu lazy mode variable and then
* issue the do-nothing hypercall to flush any stored calls. */ * issue the do-nothing hypercall to flush any stored calls. */
static void lguest_leave_lazy_mmu_mode(void) static void lguest_leave_lazy_mmu_mode(void)
@@ -179,7 +195,7 @@ static void lguest_end_context_switch(struct task_struct *next)
paravirt_end_context_switch(next); paravirt_end_context_switch(next);
} }
/*G:033 /*G:032
* After that diversion we return to our first native-instruction * After that diversion we return to our first native-instruction
* replacements: four functions for interrupt control. * replacements: four functions for interrupt control.
* *
@@ -199,30 +215,28 @@ static unsigned long save_fl(void)
{ {
return lguest_data.irq_enabled; return lguest_data.irq_enabled;
} }
PV_CALLEE_SAVE_REGS_THUNK(save_fl);
/* restore_flags() just sets the flags back to the value given. */
static void restore_fl(unsigned long flags)
{
lguest_data.irq_enabled = flags;
}
PV_CALLEE_SAVE_REGS_THUNK(restore_fl);
/* Interrupts go off... */ /* Interrupts go off... */
static void irq_disable(void) static void irq_disable(void)
{ {
lguest_data.irq_enabled = 0; lguest_data.irq_enabled = 0;
} }
/* Let's pause a moment. Remember how I said these are called so often?
* Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
* break some rules. In particular, these functions are assumed to save their
* own registers if they need to: normal C functions assume they can trash the
* eax register. To use normal C functions, we use
* PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
* C function, then restores it. */
PV_CALLEE_SAVE_REGS_THUNK(save_fl);
PV_CALLEE_SAVE_REGS_THUNK(irq_disable); PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
/* Interrupts go on... */
static void irq_enable(void)
{
lguest_data.irq_enabled = X86_EFLAGS_IF;
}
PV_CALLEE_SAVE_REGS_THUNK(irq_enable);
/*:*/ /*:*/
/* These are in i386_head.S */
extern void lg_irq_enable(void);
extern void lg_restore_fl(unsigned long flags);
/*M:003 Note that we don't check for outstanding interrupts when we re-enable /*M:003 Note that we don't check for outstanding interrupts when we re-enable
* them (or when we unmask an interrupt). This seems to work for the moment, * them (or when we unmask an interrupt). This seems to work for the moment,
* since interrupts are rare and we'll just get the interrupt on the next timer * since interrupts are rare and we'll just get the interrupt on the next timer
@@ -368,8 +382,8 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
case 1: /* Basic feature request. */ case 1: /* Basic feature request. */
/* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */ /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
*cx &= 0x00002201; *cx &= 0x00002201;
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */ /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU, PAE. */
*dx &= 0x07808111; *dx &= 0x07808151;
/* The Host can do a nice optimization if it knows that the /* The Host can do a nice optimization if it knows that the
* kernel mappings (addresses above 0xC0000000 or whatever * kernel mappings (addresses above 0xC0000000 or whatever
* PAGE_OFFSET is set to) haven't changed. But Linux calls * PAGE_OFFSET is set to) haven't changed. But Linux calls
@@ -388,6 +402,11 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
if (*ax > 0x80000008) if (*ax > 0x80000008)
*ax = 0x80000008; *ax = 0x80000008;
break; break;
case 0x80000001:
/* Here we should fix nx cap depending on host. */
/* For this version of PAE, we just clear NX bit. */
*dx &= ~(1 << 20);
break;
} }
} }
@@ -521,25 +540,52 @@ static void lguest_write_cr4(unsigned long val)
static void lguest_pte_update(struct mm_struct *mm, unsigned long addr, static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep) pte_t *ptep)
{ {
#ifdef CONFIG_X86_PAE
lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
ptep->pte_low, ptep->pte_high);
#else
lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low); lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
#endif
} }
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr, static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval) pte_t *ptep, pte_t pteval)
{ {
*ptep = pteval; native_set_pte(ptep, pteval);
lguest_pte_update(mm, addr, ptep); lguest_pte_update(mm, addr, ptep);
} }
/* The Guest calls this to set a top-level entry. Again, we set the entry then /* The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
* tell the Host which top-level page we changed, and the index of the entry we * to set a middle-level entry when PAE is activated.
* changed. */ * Again, we set the entry then tell the Host which page we changed,
* and the index of the entry we changed. */
#ifdef CONFIG_X86_PAE
static void lguest_set_pud(pud_t *pudp, pud_t pudval)
{
native_set_pud(pudp, pudval);
/* 32 bytes aligned pdpt address and the index. */
lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
(__pa(pudp) & 0x1F) / sizeof(pud_t));
}
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval) static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{ {
*pmdp = pmdval; native_set_pmd(pmdp, pmdval);
lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK, lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
(__pa(pmdp) & (PAGE_SIZE - 1)) / 4); (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
} }
#else
/* The Guest calls lguest_set_pmd to set a top-level entry when PAE is not
* activated. */
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
native_set_pmd(pmdp, pmdval);
lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
}
#endif
/* There are a couple of legacy places where the kernel sets a PTE, but we /* There are a couple of legacy places where the kernel sets a PTE, but we
* don't know the top level any more. This is useless for us, since we don't * don't know the top level any more. This is useless for us, since we don't
@@ -552,11 +598,31 @@ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
* which brings boot back to 0.25 seconds. */ * which brings boot back to 0.25 seconds. */
static void lguest_set_pte(pte_t *ptep, pte_t pteval) static void lguest_set_pte(pte_t *ptep, pte_t pteval)
{ {
*ptep = pteval; native_set_pte(ptep, pteval);
if (cr3_changed) if (cr3_changed)
lazy_hcall1(LHCALL_FLUSH_TLB, 1); lazy_hcall1(LHCALL_FLUSH_TLB, 1);
} }
#ifdef CONFIG_X86_PAE
static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
{
native_set_pte_atomic(ptep, pte);
if (cr3_changed)
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
}
void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
native_pte_clear(mm, addr, ptep);
lguest_pte_update(mm, addr, ptep);
}
void lguest_pmd_clear(pmd_t *pmdp)
{
lguest_set_pmd(pmdp, __pmd(0));
}
#endif
/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on /* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
* native page table operations. On native hardware you can set a new page * native page table operations. On native hardware you can set a new page
* table entry whenever you want, but if you want to remove one you have to do * table entry whenever you want, but if you want to remove one you have to do
@@ -628,13 +694,12 @@ static void __init lguest_init_IRQ(void)
{ {
unsigned int i; unsigned int i;
for (i = 0; i < LGUEST_IRQS; i++) { for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
int vector = FIRST_EXTERNAL_VECTOR + i;
/* Some systems map "vectors" to interrupts weirdly. Lguest has /* Some systems map "vectors" to interrupts weirdly. Lguest has
* a straightforward 1 to 1 mapping, so force that here. */ * a straightforward 1 to 1 mapping, so force that here. */
__get_cpu_var(vector_irq)[vector] = i; __get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
if (vector != SYSCALL_VECTOR) if (i != SYSCALL_VECTOR)
set_intr_gate(vector, interrupt[i]); set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
} }
/* This call is required to set up for 4k stacks, where we have /* This call is required to set up for 4k stacks, where we have
* separate stacks for hard and soft interrupts. */ * separate stacks for hard and soft interrupts. */
@@ -973,10 +1038,10 @@ static void lguest_restart(char *reason)
* *
* Our current solution is to allow the paravirt back end to optionally patch * Our current solution is to allow the paravirt back end to optionally patch
* over the indirect calls to replace them with something more efficient. We * over the indirect calls to replace them with something more efficient. We
* patch the four most commonly called functions: disable interrupts, enable * patch two of the simplest of the most commonly called functions: disable
* interrupts, restore interrupts and save interrupts. We usually have 6 or 10 * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
* bytes to patch into: the Guest versions of these operations are small enough * into: the Guest versions of these operations are small enough that we can
* that we can fit comfortably. * fit comfortably.
* *
* First we need assembly templates of each of the patchable Guest operations, * First we need assembly templates of each of the patchable Guest operations,
* and these are in i386_head.S. */ * and these are in i386_head.S. */
@@ -987,8 +1052,6 @@ static const struct lguest_insns
const char *start, *end; const char *start, *end;
} lguest_insns[] = { } lguest_insns[] = {
[PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli }, [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
[PARAVIRT_PATCH(pv_irq_ops.irq_enable)] = { lgstart_sti, lgend_sti },
[PARAVIRT_PATCH(pv_irq_ops.restore_fl)] = { lgstart_popf, lgend_popf },
[PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf }, [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
}; };
@@ -1026,6 +1089,7 @@ __init void lguest_init(void)
pv_info.name = "lguest"; pv_info.name = "lguest";
pv_info.paravirt_enabled = 1; pv_info.paravirt_enabled = 1;
pv_info.kernel_rpl = 1; pv_info.kernel_rpl = 1;
pv_info.shared_kernel_pmd = 1;
/* We set up all the lguest overrides for sensitive operations. These /* We set up all the lguest overrides for sensitive operations. These
* are detailed with the operations themselves. */ * are detailed with the operations themselves. */
@@ -1033,9 +1097,9 @@ __init void lguest_init(void)
/* interrupt-related operations */ /* interrupt-related operations */
pv_irq_ops.init_IRQ = lguest_init_IRQ; pv_irq_ops.init_IRQ = lguest_init_IRQ;
pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl); pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
pv_irq_ops.restore_fl = PV_CALLEE_SAVE(restore_fl); pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable); pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
pv_irq_ops.irq_enable = PV_CALLEE_SAVE(irq_enable); pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
pv_irq_ops.safe_halt = lguest_safe_halt; pv_irq_ops.safe_halt = lguest_safe_halt;
/* init-time operations */ /* init-time operations */
@@ -1071,6 +1135,12 @@ __init void lguest_init(void)
pv_mmu_ops.set_pte = lguest_set_pte; pv_mmu_ops.set_pte = lguest_set_pte;
pv_mmu_ops.set_pte_at = lguest_set_pte_at; pv_mmu_ops.set_pte_at = lguest_set_pte_at;
pv_mmu_ops.set_pmd = lguest_set_pmd; pv_mmu_ops.set_pmd = lguest_set_pmd;
#ifdef CONFIG_X86_PAE
pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
pv_mmu_ops.pte_clear = lguest_pte_clear;
pv_mmu_ops.pmd_clear = lguest_pmd_clear;
pv_mmu_ops.set_pud = lguest_set_pud;
#endif
pv_mmu_ops.read_cr2 = lguest_read_cr2; pv_mmu_ops.read_cr2 = lguest_read_cr2;
pv_mmu_ops.read_cr3 = lguest_read_cr3; pv_mmu_ops.read_cr3 = lguest_read_cr3;
pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu; pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;

View File

@@ -46,10 +46,64 @@ ENTRY(lguest_entry)
.globl lgstart_##name; .globl lgend_##name .globl lgstart_##name; .globl lgend_##name
LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled) LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(sti, movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(popf, movl %eax, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax) LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)
/*:*/
/*G:033 But using those wrappers is inefficient (we'll see why that doesn't
* matter for save_fl and irq_disable later). If we write our routines
* carefully in assembler, we can avoid clobbering any registers and avoid
* jumping through the wrapper functions.
*
* I skipped over our first piece of assembler, but this one is worth studying
* in a bit more detail so I'll describe in easy stages. First, the routine
* to enable interrupts: */
ENTRY(lg_irq_enable)
/* The reverse of irq_disable, this sets lguest_data.irq_enabled to
* X86_EFLAGS_IF (ie. "Interrupts enabled"). */
movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled
/* But now we need to check if the Host wants to know: there might have
* been interrupts waiting to be delivered, in which case it will have
* set lguest_data.irq_pending to X86_EFLAGS_IF. If it's not zero, we
* jump to send_interrupts, otherwise we're done. */
testl $0, lguest_data+LGUEST_DATA_irq_pending
jnz send_interrupts
/* One cool thing about x86 is that you can do many things without using
* a register. In this case, the normal path hasn't needed to save or
* restore any registers at all! */
ret
send_interrupts:
/* OK, now we need a register: eax is used for the hypercall number,
* which is LHCALL_SEND_INTERRUPTS.
*
* We used not to bother with this pending detection at all, which was
* much simpler. Sooner or later the Host would realize it had to
* send us an interrupt. But that turns out to make performance 7
* times worse on a simple tcp benchmark. So now we do this the hard
* way. */
pushl %eax
movl $LHCALL_SEND_INTERRUPTS, %eax
/* This is a vmcall instruction (same thing that KVM uses). Older
* assembler versions might not know the "vmcall" instruction, so we
* create one manually here. */
.byte 0x0f,0x01,0xc1 /* KVM_HYPERCALL */
popl %eax
ret
/* Finally, the "popf" or "restore flags" routine. The %eax register holds the
* flags (in practice, either X86_EFLAGS_IF or 0): if it's X86_EFLAGS_IF we're
* enabling interrupts again, if it's 0 we're leaving them off. */
ENTRY(lg_restore_fl)
/* This is just "lguest_data.irq_enabled = flags;" */
movl %eax, lguest_data+LGUEST_DATA_irq_enabled
/* Now, if the %eax value has enabled interrupts and
* lguest_data.irq_pending is set, we want to tell the Host so it can
* deliver any outstanding interrupts. Fortunately, both values will
* be X86_EFLAGS_IF (ie. 512) in that case, and the "testl"
* instruction will AND them together for us. If both are set, we
* jump to send_interrupts. */
testl lguest_data+LGUEST_DATA_irq_pending, %eax
jnz send_interrupts
/* Again, the normal path has used no extra registers. Clever, huh? */
ret
/* These demark the EIP range where host should never deliver interrupts. */ /* These demark the EIP range where host should never deliver interrupts. */
.global lguest_noirq_start .global lguest_noirq_start

View File

@@ -1,6 +1,6 @@
config LGUEST config LGUEST
tristate "Linux hypervisor example code" tristate "Linux hypervisor example code"
depends on X86_32 && EXPERIMENTAL && !X86_PAE && FUTEX depends on X86_32 && EXPERIMENTAL && EVENTFD
select HVC_DRIVER select HVC_DRIVER
---help--- ---help---
This is a very simple module which allows you to run This is a very simple module which allows you to run

View File

@@ -95,7 +95,7 @@ static __init int map_switcher(void)
* array of struct pages. It increments that pointer, but we don't * array of struct pages. It increments that pointer, but we don't
* care. */ * care. */
pagep = switcher_page; pagep = switcher_page;
err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep); err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
if (err) { if (err) {
printk("lguest: map_vm_area failed: %i\n", err); printk("lguest: map_vm_area failed: %i\n", err);
goto free_vma; goto free_vma;
@@ -188,6 +188,9 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{ {
/* We stop running once the Guest is dead. */ /* We stop running once the Guest is dead. */
while (!cpu->lg->dead) { while (!cpu->lg->dead) {
unsigned int irq;
bool more;
/* First we run any hypercalls the Guest wants done. */ /* First we run any hypercalls the Guest wants done. */
if (cpu->hcall) if (cpu->hcall)
do_hypercalls(cpu); do_hypercalls(cpu);
@@ -195,23 +198,23 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
/* It's possible the Guest did a NOTIFY hypercall to the /* It's possible the Guest did a NOTIFY hypercall to the
* Launcher, in which case we return from the read() now. */ * Launcher, in which case we return from the read() now. */
if (cpu->pending_notify) { if (cpu->pending_notify) {
if (!send_notify_to_eventfd(cpu)) {
if (put_user(cpu->pending_notify, user)) if (put_user(cpu->pending_notify, user))
return -EFAULT; return -EFAULT;
return sizeof(cpu->pending_notify); return sizeof(cpu->pending_notify);
} }
}
/* Check for signals */ /* Check for signals */
if (signal_pending(current)) if (signal_pending(current))
return -ERESTARTSYS; return -ERESTARTSYS;
/* If Waker set break_out, return to Launcher. */
if (cpu->break_out)
return -EAGAIN;
/* Check if there are any interrupts which can be delivered now: /* Check if there are any interrupts which can be delivered now:
* if so, this sets up the hander to be executed when we next * if so, this sets up the hander to be executed when we next
* run the Guest. */ * run the Guest. */
maybe_do_interrupt(cpu); irq = interrupt_pending(cpu, &more);
if (irq < LGUEST_IRQS)
try_deliver_interrupt(cpu, irq, more);
/* All long-lived kernel loops need to check with this horrible /* All long-lived kernel loops need to check with this horrible
* thing called the freezer. If the Host is trying to suspend, * thing called the freezer. If the Host is trying to suspend,
@@ -224,9 +227,14 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
break; break;
/* If the Guest asked to be stopped, we sleep. The Guest's /* If the Guest asked to be stopped, we sleep. The Guest's
* clock timer or LHREQ_BREAK from the Waker will wake us. */ * clock timer will wake us. */
if (cpu->halted) { if (cpu->halted) {
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
/* Just before we sleep, make sure no interrupt snuck in
* which we should be doing. */
if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
set_current_state(TASK_RUNNING);
else
schedule(); schedule();
continue; continue;
} }

View File

@@ -37,6 +37,10 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
/* This call does nothing, except by breaking out of the Guest /* This call does nothing, except by breaking out of the Guest
* it makes us process all the asynchronous hypercalls. */ * it makes us process all the asynchronous hypercalls. */
break; break;
case LHCALL_SEND_INTERRUPTS:
/* This call does nothing too, but by breaking out of the Guest
* it makes us process any pending interrupts. */
break;
case LHCALL_LGUEST_INIT: case LHCALL_LGUEST_INIT:
/* You can't get here unless you're already initialized. Don't /* You can't get here unless you're already initialized. Don't
* do that. */ * do that. */
@@ -73,11 +77,21 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
guest_set_stack(cpu, args->arg1, args->arg2, args->arg3); guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
break; break;
case LHCALL_SET_PTE: case LHCALL_SET_PTE:
#ifdef CONFIG_X86_PAE
guest_set_pte(cpu, args->arg1, args->arg2,
__pte(args->arg3 | (u64)args->arg4 << 32));
#else
guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3)); guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
#endif
break; break;
case LHCALL_SET_PGD:
guest_set_pgd(cpu->lg, args->arg1, args->arg2);
break;
#ifdef CONFIG_X86_PAE
case LHCALL_SET_PMD: case LHCALL_SET_PMD:
guest_set_pmd(cpu->lg, args->arg1, args->arg2); guest_set_pmd(cpu->lg, args->arg1, args->arg2);
break; break;
#endif
case LHCALL_SET_CLOCKEVENT: case LHCALL_SET_CLOCKEVENT:
guest_set_clockevent(cpu, args->arg1); guest_set_clockevent(cpu, args->arg1);
break; break;

View File

@@ -128,30 +128,39 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
/*H:205 /*H:205
* Virtual Interrupts. * Virtual Interrupts.
* *
* maybe_do_interrupt() gets called before every entry to the Guest, to see if * interrupt_pending() returns the first pending interrupt which isn't blocked
* we should divert the Guest to running an interrupt handler. */ * by the Guest. It is called before every entry to the Guest, and just before
void maybe_do_interrupt(struct lg_cpu *cpu) * we go to sleep when the Guest has halted itself. */
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
{ {
unsigned int irq; unsigned int irq;
DECLARE_BITMAP(blk, LGUEST_IRQS); DECLARE_BITMAP(blk, LGUEST_IRQS);
struct desc_struct *idt;
/* If the Guest hasn't even initialized yet, we can do nothing. */ /* If the Guest hasn't even initialized yet, we can do nothing. */
if (!cpu->lg->lguest_data) if (!cpu->lg->lguest_data)
return; return LGUEST_IRQS;
/* Take our "irqs_pending" array and remove any interrupts the Guest /* Take our "irqs_pending" array and remove any interrupts the Guest
* wants blocked: the result ends up in "blk". */ * wants blocked: the result ends up in "blk". */
if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts, if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
sizeof(blk))) sizeof(blk)))
return; return LGUEST_IRQS;
bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS); bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
/* Find the first interrupt. */ /* Find the first interrupt. */
irq = find_first_bit(blk, LGUEST_IRQS); irq = find_first_bit(blk, LGUEST_IRQS);
/* None? Nothing to do */ *more = find_next_bit(blk, LGUEST_IRQS, irq+1);
if (irq >= LGUEST_IRQS)
return; return irq;
}
/* This actually diverts the Guest to running an interrupt handler, once an
* interrupt has been identified by interrupt_pending(). */
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
{
struct desc_struct *idt;
BUG_ON(irq >= LGUEST_IRQS);
/* They may be in the middle of an iret, where they asked us never to /* They may be in the middle of an iret, where they asked us never to
* deliver interrupts. */ * deliver interrupts. */
@@ -170,9 +179,13 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
u32 irq_enabled; u32 irq_enabled;
if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled)) if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
irq_enabled = 0; irq_enabled = 0;
if (!irq_enabled) if (!irq_enabled) {
/* Make sure they know an IRQ is pending. */
put_user(X86_EFLAGS_IF,
&cpu->lg->lguest_data->irq_pending);
return; return;
} }
}
/* Look at the IDT entry the Guest gave us for this interrupt. The /* Look at the IDT entry the Guest gave us for this interrupt. The
* first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
@@ -194,6 +207,25 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
* here is a compromise which means at least it gets updated every * here is a compromise which means at least it gets updated every
* timer interrupt. */ * timer interrupt. */
write_timestamp(cpu); write_timestamp(cpu);
/* If there are no other interrupts we want to deliver, clear
* the pending flag. */
if (!more)
put_user(0, &cpu->lg->lguest_data->irq_pending);
}
/* And this is the routine when we want to set an interrupt for the Guest. */
void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
{
/* Next time the Guest runs, the core code will see if it can deliver
* this interrupt. */
set_bit(irq, cpu->irqs_pending);
/* Make sure it sees it; it might be asleep (eg. halted), or
* running the Guest right now, in which case kick_process()
* will knock it out. */
if (!wake_up_process(cpu->tsk))
kick_process(cpu->tsk);
} }
/*:*/ /*:*/
@@ -510,10 +542,7 @@ static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt); struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
/* Remember the first interrupt is the timer interrupt. */ /* Remember the first interrupt is the timer interrupt. */
set_bit(0, cpu->irqs_pending); set_interrupt(cpu, 0);
/* If the Guest is actually stopped, we need to wake it up. */
if (cpu->halted)
wake_up_process(cpu->tsk);
return HRTIMER_NORESTART; return HRTIMER_NORESTART;
} }

View File

@@ -49,7 +49,7 @@ struct lg_cpu {
u32 cr2; u32 cr2;
int ts; int ts;
u32 esp1; u32 esp1;
u8 ss1; u16 ss1;
/* Bitmap of what has changed: see CHANGED_* above. */ /* Bitmap of what has changed: see CHANGED_* above. */
int changed; int changed;
@@ -71,9 +71,7 @@ struct lg_cpu {
/* Virtual clock device */ /* Virtual clock device */
struct hrtimer hrt; struct hrtimer hrt;
/* Do we need to stop what we're doing and return to userspace? */ /* Did the Guest tell us to halt? */
int break_out;
wait_queue_head_t break_wq;
int halted; int halted;
/* Pending virtual interrupts */ /* Pending virtual interrupts */
@@ -82,6 +80,16 @@ struct lg_cpu {
struct lg_cpu_arch arch; struct lg_cpu_arch arch;
}; };
struct lg_eventfd {
unsigned long addr;
struct file *event;
};
struct lg_eventfd_map {
unsigned int num;
struct lg_eventfd map[];
};
/* The private info the thread maintains about the guest. */ /* The private info the thread maintains about the guest. */
struct lguest struct lguest
{ {
@@ -102,6 +110,8 @@ struct lguest
unsigned int stack_pages; unsigned int stack_pages;
u32 tsc_khz; u32 tsc_khz;
struct lg_eventfd_map *eventfds;
/* Dead? */ /* Dead? */
const char *dead; const char *dead;
}; };
@@ -137,9 +147,13 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
* in the kernel. */ * in the kernel. */
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK) #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT) #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
/* interrupts_and_traps.c: */ /* interrupts_and_traps.c: */
void maybe_do_interrupt(struct lg_cpu *cpu); unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
bool deliver_trap(struct lg_cpu *cpu, unsigned int num); bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i, void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
u32 low, u32 hi); u32 low, u32 hi);
@@ -150,6 +164,7 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt, void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def); const unsigned long *def);
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta); void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
bool send_notify_to_eventfd(struct lg_cpu *cpu);
void init_clockdev(struct lg_cpu *cpu); void init_clockdev(struct lg_cpu *cpu);
bool check_syscall_vector(struct lguest *lg); bool check_syscall_vector(struct lguest *lg);
int init_interrupts(void); int init_interrupts(void);
@@ -168,7 +183,10 @@ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
int init_guest_pagetable(struct lguest *lg); int init_guest_pagetable(struct lguest *lg);
void free_guest_pagetable(struct lguest *lg); void free_guest_pagetable(struct lguest *lg);
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable); void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
#ifdef CONFIG_X86_PAE
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i); void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
#endif
void guest_pagetable_clear_all(struct lg_cpu *cpu); void guest_pagetable_clear_all(struct lg_cpu *cpu);
void guest_pagetable_flush_user(struct lg_cpu *cpu); void guest_pagetable_flush_user(struct lg_cpu *cpu);
void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir, void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,

View File

@@ -7,32 +7,83 @@
#include <linux/miscdevice.h> #include <linux/miscdevice.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include "lg.h" #include "lg.h"
/*L:055 When something happens, the Waker process needs a way to stop the bool send_notify_to_eventfd(struct lg_cpu *cpu)
* kernel running the Guest and return to the Launcher. So the Waker writes
* LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
* has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
* the Waker. */
static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
{ {
unsigned long on; unsigned int i;
struct lg_eventfd_map *map;
/* Fetch whether they're turning break on or off. */ /* lg->eventfds is RCU-protected */
if (get_user(on, input) != 0) rcu_read_lock();
map = rcu_dereference(cpu->lg->eventfds);
for (i = 0; i < map->num; i++) {
if (map->map[i].addr == cpu->pending_notify) {
eventfd_signal(map->map[i].event, 1);
cpu->pending_notify = 0;
break;
}
}
rcu_read_unlock();
return cpu->pending_notify == 0;
}
static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
{
struct lg_eventfd_map *new, *old = lg->eventfds;
if (!addr)
return -EINVAL;
/* Replace the old array with the new one, carefully: others can
* be accessing it at the same time */
new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
GFP_KERNEL);
if (!new)
return -ENOMEM;
/* First make identical copy. */
memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
new->num = old->num;
/* Now append new entry. */
new->map[new->num].addr = addr;
new->map[new->num].event = eventfd_fget(fd);
if (IS_ERR(new->map[new->num].event)) {
kfree(new);
return PTR_ERR(new->map[new->num].event);
}
new->num++;
/* Now put new one in place. */
rcu_assign_pointer(lg->eventfds, new);
/* We're not in a big hurry. Wait until noone's looking at old
* version, then delete it. */
synchronize_rcu();
kfree(old);
return 0;
}
static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
{
unsigned long addr, fd;
int err;
if (get_user(addr, input) != 0)
return -EFAULT;
input++;
if (get_user(fd, input) != 0)
return -EFAULT; return -EFAULT;
if (on) { mutex_lock(&lguest_lock);
cpu->break_out = 1; err = add_eventfd(lg, addr, fd);
/* Pop it out of the Guest (may be running on different CPU) */ mutex_unlock(&lguest_lock);
wake_up_process(cpu->tsk);
/* Wait for them to reset it */
return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
} else {
cpu->break_out = 0;
wake_up(&cpu->break_wq);
return 0; return 0;
}
} }
/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
@@ -45,9 +96,8 @@ static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
return -EFAULT; return -EFAULT;
if (irq >= LGUEST_IRQS) if (irq >= LGUEST_IRQS)
return -EINVAL; return -EINVAL;
/* Next time the Guest runs, the core code will see if it can deliver
* this interrupt. */ set_interrupt(cpu, irq);
set_bit(irq, cpu->irqs_pending);
return 0; return 0;
} }
@@ -126,9 +176,6 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
* address. */ * address. */
lguest_arch_setup_regs(cpu, start_ip); lguest_arch_setup_regs(cpu, start_ip);
/* Initialize the queue for the Waker to wait on */
init_waitqueue_head(&cpu->break_wq);
/* We keep a pointer to the Launcher task (ie. current task) for when /* We keep a pointer to the Launcher task (ie. current task) for when
* other Guests want to wake this one (eg. console input). */ * other Guests want to wake this one (eg. console input). */
cpu->tsk = current; cpu->tsk = current;
@@ -185,6 +232,13 @@ static int initialize(struct file *file, const unsigned long __user *input)
goto unlock; goto unlock;
} }
lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
if (!lg->eventfds) {
err = -ENOMEM;
goto free_lg;
}
lg->eventfds->num = 0;
/* Populate the easy fields of our "struct lguest" */ /* Populate the easy fields of our "struct lguest" */
lg->mem_base = (void __user *)args[0]; lg->mem_base = (void __user *)args[0];
lg->pfn_limit = args[1]; lg->pfn_limit = args[1];
@@ -192,7 +246,7 @@ static int initialize(struct file *file, const unsigned long __user *input)
/* This is the first cpu (cpu 0) and it will start booting at args[2] */ /* This is the first cpu (cpu 0) and it will start booting at args[2] */
err = lg_cpu_start(&lg->cpus[0], 0, args[2]); err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
if (err) if (err)
goto release_guest; goto free_eventfds;
/* Initialize the Guest's shadow page tables, using the toplevel /* Initialize the Guest's shadow page tables, using the toplevel
* address the Launcher gave us. This allocates memory, so can fail. */ * address the Launcher gave us. This allocates memory, so can fail. */
@@ -211,7 +265,9 @@ static int initialize(struct file *file, const unsigned long __user *input)
free_regs: free_regs:
/* FIXME: This should be in free_vcpu */ /* FIXME: This should be in free_vcpu */
free_page(lg->cpus[0].regs_page); free_page(lg->cpus[0].regs_page);
release_guest: free_eventfds:
kfree(lg->eventfds);
free_lg:
kfree(lg); kfree(lg);
unlock: unlock:
mutex_unlock(&lguest_lock); mutex_unlock(&lguest_lock);
@@ -252,11 +308,6 @@ static ssize_t write(struct file *file, const char __user *in,
/* Once the Guest is dead, you can only read() why it died. */ /* Once the Guest is dead, you can only read() why it died. */
if (lg->dead) if (lg->dead)
return -ENOENT; return -ENOENT;
/* If you're not the task which owns the Guest, all you can do
* is break the Launcher out of running the Guest. */
if (current != cpu->tsk && req != LHREQ_BREAK)
return -EPERM;
} }
switch (req) { switch (req) {
@@ -264,8 +315,8 @@ static ssize_t write(struct file *file, const char __user *in,
return initialize(file, input); return initialize(file, input);
case LHREQ_IRQ: case LHREQ_IRQ:
return user_send_irq(cpu, input); return user_send_irq(cpu, input);
case LHREQ_BREAK: case LHREQ_EVENTFD:
return break_guest_out(cpu, input); return attach_eventfd(lg, input);
default: default:
return -EINVAL; return -EINVAL;
} }
@@ -303,6 +354,12 @@ static int close(struct inode *inode, struct file *file)
* the Launcher's memory management structure. */ * the Launcher's memory management structure. */
mmput(lg->cpus[i].mm); mmput(lg->cpus[i].mm);
} }
/* Release any eventfds they registered. */
for (i = 0; i < lg->eventfds->num; i++)
fput(lg->eventfds->map[i].event);
kfree(lg->eventfds);
/* If lg->dead doesn't contain an error code it will be NULL or a /* If lg->dead doesn't contain an error code it will be NULL or a
* kmalloc()ed string, either of which is ok to hand to kfree(). */ * kmalloc()ed string, either of which is ok to hand to kfree(). */
if (!IS_ERR(lg->dead)) if (!IS_ERR(lg->dead))

View File

@@ -53,6 +53,17 @@
* page. */ * page. */
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
/* For PAE we need the PMD index as well. We use the last 2MB, so we
* will need the last pmd entry of the last pmd page. */
#ifdef CONFIG_X86_PAE
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
#define RESERVE_MEM 2U
#define CHECK_GPGD_MASK _PAGE_PRESENT
#else
#define RESERVE_MEM 4U
#define CHECK_GPGD_MASK _PAGE_TABLE
#endif
/* We actually need a separate PTE page for each CPU. Remember that after the /* We actually need a separate PTE page for each CPU. Remember that after the
* Switcher code itself comes two pages for each CPU, and we don't want this * Switcher code itself comes two pages for each CPU, and we don't want this
* CPU's guest to see the pages of any other CPU. */ * CPU's guest to see the pages of any other CPU. */
@@ -73,24 +84,59 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{ {
unsigned int index = pgd_index(vaddr); unsigned int index = pgd_index(vaddr);
#ifndef CONFIG_X86_PAE
/* We kill any Guest trying to touch the Switcher addresses. */ /* We kill any Guest trying to touch the Switcher addresses. */
if (index >= SWITCHER_PGD_INDEX) { if (index >= SWITCHER_PGD_INDEX) {
kill_guest(cpu, "attempt to access switcher pages"); kill_guest(cpu, "attempt to access switcher pages");
index = 0; index = 0;
} }
#endif
/* Return a pointer index'th pgd entry for the i'th page table. */ /* Return a pointer index'th pgd entry for the i'th page table. */
return &cpu->lg->pgdirs[i].pgdir[index]; return &cpu->lg->pgdirs[i].pgdir[index];
} }
#ifdef CONFIG_X86_PAE
/* This routine then takes the PGD entry given above, which contains the
* address of the PMD page. It then returns a pointer to the PMD entry for the
* given address. */
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
unsigned int index = pmd_index(vaddr);
pmd_t *page;
/* We kill any Guest trying to touch the Switcher addresses. */
if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
index >= SWITCHER_PMD_INDEX) {
kill_guest(cpu, "attempt to access switcher pages");
index = 0;
}
/* You should never call this if the PGD entry wasn't valid */
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
return &page[index];
}
#endif
/* This routine then takes the page directory entry returned above, which /* This routine then takes the page directory entry returned above, which
* contains the address of the page table entry (PTE) page. It then returns a * contains the address of the page table entry (PTE) page. It then returns a
* pointer to the PTE entry for the given address. */ * pointer to the PTE entry for the given address. */
static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr) static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{ {
#ifdef CONFIG_X86_PAE
pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
/* You should never call this if the PMD entry wasn't valid */
BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
#else
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT); pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
/* You should never call this if the PGD entry wasn't valid */ /* You should never call this if the PGD entry wasn't valid */
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE]; #endif
return &page[pte_index(vaddr)];
} }
/* These two functions just like the above two, except they access the Guest /* These two functions just like the above two, except they access the Guest
@@ -101,12 +147,32 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t); return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
} }
static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr) #ifdef CONFIG_X86_PAE
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
{ {
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t); return gpage + pmd_index(vaddr) * sizeof(pmd_t);
} }
static unsigned long gpte_addr(struct lg_cpu *cpu,
pmd_t gpmd, unsigned long vaddr)
{
unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#else
static unsigned long gpte_addr(struct lg_cpu *cpu,
pgd_t gpgd, unsigned long vaddr)
{
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#endif
/*:*/ /*:*/
/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as /*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
@@ -171,7 +237,7 @@ static void release_pte(pte_t pte)
/* Remember that get_user_pages_fast() took a reference to the page, in /* Remember that get_user_pages_fast() took a reference to the page, in
* get_pfn()? We have to put it back now. */ * get_pfn()? We have to put it back now. */
if (pte_flags(pte) & _PAGE_PRESENT) if (pte_flags(pte) & _PAGE_PRESENT)
put_page(pfn_to_page(pte_pfn(pte))); put_page(pte_page(pte));
} }
/*:*/ /*:*/
@@ -184,11 +250,20 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd) static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
{ {
if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
(pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
kill_guest(cpu, "bad page directory entry"); kill_guest(cpu, "bad page directory entry");
} }
#ifdef CONFIG_X86_PAE
static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
{
if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
(pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
kill_guest(cpu, "bad page middle directory entry");
}
#endif
/*H:330 /*H:330
* (i) Looking up a page table entry when the Guest faults. * (i) Looking up a page table entry when the Guest faults.
* *
@@ -207,6 +282,11 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
pte_t gpte; pte_t gpte;
pte_t *spte; pte_t *spte;
#ifdef CONFIG_X86_PAE
pmd_t *spmd;
pmd_t gpmd;
#endif
/* First step: get the top-level Guest page table entry. */ /* First step: get the top-level Guest page table entry. */
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
/* Toplevel not present? We can't map it in. */ /* Toplevel not present? We can't map it in. */
@@ -228,12 +308,45 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
check_gpgd(cpu, gpgd); check_gpgd(cpu, gpgd);
/* And we copy the flags to the shadow PGD entry. The page /* And we copy the flags to the shadow PGD entry. The page
* number in the shadow PGD is the page we just allocated. */ * number in the shadow PGD is the page we just allocated. */
*spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd)); set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
}
#ifdef CONFIG_X86_PAE
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
/* middle level not present? We can't map it in. */
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
return false;
/* Now look at the matching shadow entry. */
spmd = spmd_addr(cpu, *spgd, vaddr);
if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
/* No shadow entry: allocate a new shadow PTE page. */
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
/* This is not really the Guest's fault, but killing it is
* simple for this corner case. */
if (!ptepage) {
kill_guest(cpu, "out of memory allocating pte page");
return false;
}
/* We check that the Guest pmd is OK. */
check_gpmd(cpu, gpmd);
/* And we copy the flags to the shadow PMD entry. The page
* number in the shadow PMD is the page we just allocated. */
native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
} }
/* OK, now we look at the lower level in the Guest page table: keep its /* OK, now we look at the lower level in the Guest page table: keep its
* address, because we might update it later. */ * address, because we might update it later. */
gpte_ptr = gpte_addr(gpgd, vaddr); gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
#else
/* OK, now we look at the lower level in the Guest page table: keep its
* address, because we might update it later. */
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
#endif
gpte = lgread(cpu, gpte_ptr, pte_t); gpte = lgread(cpu, gpte_ptr, pte_t);
/* If this page isn't in the Guest page tables, we can't page it in. */ /* If this page isn't in the Guest page tables, we can't page it in. */
@@ -259,7 +372,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
gpte = pte_mkdirty(gpte); gpte = pte_mkdirty(gpte);
/* Get the pointer to the shadow PTE entry we're going to set. */ /* Get the pointer to the shadow PTE entry we're going to set. */
spte = spte_addr(*spgd, vaddr); spte = spte_addr(cpu, *spgd, vaddr);
/* If there was a valid shadow PTE entry here before, we release it. /* If there was a valid shadow PTE entry here before, we release it.
* This can happen with a write to a previously read-only entry. */ * This can happen with a write to a previously read-only entry. */
release_pte(*spte); release_pte(*spte);
@@ -273,7 +386,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
* table entry, even if the Guest says it's writable. That way * table entry, even if the Guest says it's writable. That way
* we will come back here when a write does actually occur, so * we will come back here when a write does actually occur, so
* we can update the Guest's _PAGE_DIRTY flag. */ * we can update the Guest's _PAGE_DIRTY flag. */
*spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0); native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
/* Finally, we write the Guest PTE entry back: we've set the /* Finally, we write the Guest PTE entry back: we've set the
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */ * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
@@ -301,14 +414,23 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
pgd_t *spgd; pgd_t *spgd;
unsigned long flags; unsigned long flags;
#ifdef CONFIG_X86_PAE
pmd_t *spmd;
#endif
/* Look at the current top level entry: is it present? */ /* Look at the current top level entry: is it present? */
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr); spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
return false; return false;
#ifdef CONFIG_X86_PAE
spmd = spmd_addr(cpu, *spgd, vaddr);
if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
return false;
#endif
/* Check the flags on the pte entry itself: it must be present and /* Check the flags on the pte entry itself: it must be present and
* writable. */ * writable. */
flags = pte_flags(*(spte_addr(*spgd, vaddr))); flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
} }
@@ -322,8 +444,43 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
kill_guest(cpu, "bad stack page %#lx", vaddr); kill_guest(cpu, "bad stack page %#lx", vaddr);
} }
#ifdef CONFIG_X86_PAE
static void release_pmd(pmd_t *spmd)
{
/* If the entry's not present, there's nothing to release. */
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
unsigned int i;
pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
/* For each entry in the page, we might need to release it. */
for (i = 0; i < PTRS_PER_PTE; i++)
release_pte(ptepage[i]);
/* Now we can free the page of PTEs */
free_page((long)ptepage);
/* And zero out the PMD entry so we never release it twice. */
native_set_pmd(spmd, __pmd(0));
}
}
static void release_pgd(pgd_t *spgd)
{
/* If the entry's not present, there's nothing to release. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
unsigned int i;
pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
for (i = 0; i < PTRS_PER_PMD; i++)
release_pmd(&pmdpage[i]);
/* Now we can free the page of PMDs */
free_page((long)pmdpage);
/* And zero out the PGD entry so we never release it twice. */
set_pgd(spgd, __pgd(0));
}
}
#else /* !CONFIG_X86_PAE */
/*H:450 If we chase down the release_pgd() code, it looks like this: */ /*H:450 If we chase down the release_pgd() code, it looks like this: */
static void release_pgd(struct lguest *lg, pgd_t *spgd) static void release_pgd(pgd_t *spgd)
{ {
/* If the entry's not present, there's nothing to release. */ /* If the entry's not present, there's nothing to release. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) { if (pgd_flags(*spgd) & _PAGE_PRESENT) {
@@ -341,7 +498,7 @@ static void release_pgd(struct lguest *lg, pgd_t *spgd)
*spgd = __pgd(0); *spgd = __pgd(0);
} }
} }
#endif
/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings() /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page. * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
* It simply releases every PTE page from 0 up to the Guest's kernel address. */ * It simply releases every PTE page from 0 up to the Guest's kernel address. */
@@ -350,7 +507,7 @@ static void flush_user_mappings(struct lguest *lg, int idx)
unsigned int i; unsigned int i;
/* Release every pgd entry up to the kernel's address. */ /* Release every pgd entry up to the kernel's address. */
for (i = 0; i < pgd_index(lg->kernel_address); i++) for (i = 0; i < pgd_index(lg->kernel_address); i++)
release_pgd(lg, lg->pgdirs[idx].pgdir + i); release_pgd(lg->pgdirs[idx].pgdir + i);
} }
/*H:440 (v) Flushing (throwing away) page tables, /*H:440 (v) Flushing (throwing away) page tables,
@@ -369,7 +526,9 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
{ {
pgd_t gpgd; pgd_t gpgd;
pte_t gpte; pte_t gpte;
#ifdef CONFIG_X86_PAE
pmd_t gpmd;
#endif
/* First step: get the top-level Guest page table entry. */ /* First step: get the top-level Guest page table entry. */
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
/* Toplevel not present? We can't map it in. */ /* Toplevel not present? We can't map it in. */
@@ -378,7 +537,14 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
return -1UL; return -1UL;
} }
gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t); #ifdef CONFIG_X86_PAE
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
kill_guest(cpu, "Bad address %#lx", vaddr);
gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
#else
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
#endif
if (!(pte_flags(gpte) & _PAGE_PRESENT)) if (!(pte_flags(gpte) & _PAGE_PRESENT))
kill_guest(cpu, "Bad address %#lx", vaddr); kill_guest(cpu, "Bad address %#lx", vaddr);
@@ -405,6 +571,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
int *blank_pgdir) int *blank_pgdir)
{ {
unsigned int next; unsigned int next;
#ifdef CONFIG_X86_PAE
pmd_t *pmd_table;
#endif
/* We pick one entry at random to throw out. Choosing the Least /* We pick one entry at random to throw out. Choosing the Least
* Recently Used might be better, but this is easy. */ * Recently Used might be better, but this is easy. */
@@ -416,11 +585,28 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
/* If the allocation fails, just keep using the one we have */ /* If the allocation fails, just keep using the one we have */
if (!cpu->lg->pgdirs[next].pgdir) if (!cpu->lg->pgdirs[next].pgdir)
next = cpu->cpu_pgd; next = cpu->cpu_pgd;
else else {
#ifdef CONFIG_X86_PAE
/* In PAE mode, allocate a pmd page and populate the
* last pgd entry. */
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
if (!pmd_table) {
free_page((long)cpu->lg->pgdirs[next].pgdir);
set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
next = cpu->cpu_pgd;
} else {
set_pgd(cpu->lg->pgdirs[next].pgdir +
SWITCHER_PGD_INDEX,
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
/* This is a blank page, so there are no kernel /* This is a blank page, so there are no kernel
* mappings: caller must map the stack! */ * mappings: caller must map the stack! */
*blank_pgdir = 1; *blank_pgdir = 1;
} }
#else
*blank_pgdir = 1;
#endif
}
}
/* Record which Guest toplevel this shadows. */ /* Record which Guest toplevel this shadows. */
cpu->lg->pgdirs[next].gpgdir = gpgdir; cpu->lg->pgdirs[next].gpgdir = gpgdir;
/* Release all the non-kernel mappings. */ /* Release all the non-kernel mappings. */
@@ -431,7 +617,7 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
/*H:430 (iv) Switching page tables /*H:430 (iv) Switching page tables
* *
* Now we've seen all the page table setting and manipulation, let's see what * Now we've seen all the page table setting and manipulation, let's see
* what happens when the Guest changes page tables (ie. changes the top-level * what happens when the Guest changes page tables (ie. changes the top-level
* pgdir). This occurs on almost every context switch. */ * pgdir). This occurs on almost every context switch. */
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
@@ -460,10 +646,25 @@ static void release_all_pagetables(struct lguest *lg)
/* Every shadow pagetable this Guest has */ /* Every shadow pagetable this Guest has */
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
if (lg->pgdirs[i].pgdir) if (lg->pgdirs[i].pgdir) {
#ifdef CONFIG_X86_PAE
pgd_t *spgd;
pmd_t *pmdpage;
unsigned int k;
/* Get the last pmd page. */
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
/* And release the pmd entries of that pmd page,
* except for the switcher pmd. */
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
release_pmd(&pmdpage[k]);
#endif
/* Every PGD entry except the Switcher at the top */ /* Every PGD entry except the Switcher at the top */
for (j = 0; j < SWITCHER_PGD_INDEX; j++) for (j = 0; j < SWITCHER_PGD_INDEX; j++)
release_pgd(lg, lg->pgdirs[i].pgdir + j); release_pgd(lg->pgdirs[i].pgdir + j);
}
} }
/* We also throw away everything when a Guest tells us it's changed a kernel /* We also throw away everything when a Guest tells us it's changed a kernel
@@ -504,24 +705,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
{ {
/* Look up the matching shadow page directory entry. */ /* Look up the matching shadow page directory entry. */
pgd_t *spgd = spgd_addr(cpu, idx, vaddr); pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
#ifdef CONFIG_X86_PAE
pmd_t *spmd;
#endif
/* If the top level isn't present, there's no entry to update. */ /* If the top level isn't present, there's no entry to update. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) { if (pgd_flags(*spgd) & _PAGE_PRESENT) {
/* Otherwise, we start by releasing the existing entry. */ #ifdef CONFIG_X86_PAE
pte_t *spte = spte_addr(*spgd, vaddr); spmd = spmd_addr(cpu, *spgd, vaddr);
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
#endif
/* Otherwise, we start by releasing
* the existing entry. */
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
release_pte(*spte); release_pte(*spte);
/* If they're setting this entry as dirty or accessed, we might /* If they're setting this entry as dirty or accessed,
* as well put that entry they've given us in now. This shaves * we might as well put that entry they've given us
* 10% off a copy-on-write micro-benchmark. */ * in now. This shaves 10% off a
* copy-on-write micro-benchmark. */
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
check_gpte(cpu, gpte); check_gpte(cpu, gpte);
*spte = gpte_to_spte(cpu, gpte, native_set_pte(spte,
pte_flags(gpte) & _PAGE_DIRTY); gpte_to_spte(cpu, gpte,
pte_flags(gpte) & _PAGE_DIRTY));
} else } else
/* Otherwise kill it and we can demand_page() it in /* Otherwise kill it and we can demand_page()
* later. */ * it in later. */
*spte = __pte(0); native_set_pte(spte, __pte(0));
#ifdef CONFIG_X86_PAE
}
#endif
} }
} }
@@ -568,12 +782,10 @@ void guest_set_pte(struct lg_cpu *cpu,
* *
* So with that in mind here's our code to to update a (top-level) PGD entry: * So with that in mind here's our code to to update a (top-level) PGD entry:
*/ */
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx) void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
{ {
int pgdir; int pgdir;
/* The kernel seems to try to initialize this early on: we ignore its
* attempts to map over the Switcher. */
if (idx >= SWITCHER_PGD_INDEX) if (idx >= SWITCHER_PGD_INDEX)
return; return;
@@ -581,8 +793,14 @@ void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
pgdir = find_pgdir(lg, gpgdir); pgdir = find_pgdir(lg, gpgdir);
if (pgdir < ARRAY_SIZE(lg->pgdirs)) if (pgdir < ARRAY_SIZE(lg->pgdirs))
/* ... throw it away. */ /* ... throw it away. */
release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); release_pgd(lg->pgdirs[pgdir].pgdir + idx);
} }
#ifdef CONFIG_X86_PAE
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
{
guest_pagetable_clear_all(&lg->cpus[0]);
}
#endif
/* Once we know how much memory we have we can construct simple identity /* Once we know how much memory we have we can construct simple identity
* (which set virtual == physical) and linear mappings * (which set virtual == physical) and linear mappings
@@ -596,8 +814,16 @@ static unsigned long setup_pagetables(struct lguest *lg,
{ {
pgd_t __user *pgdir; pgd_t __user *pgdir;
pte_t __user *linear; pte_t __user *linear;
unsigned int mapped_pages, i, linear_pages, phys_linear;
unsigned long mem_base = (unsigned long)lg->mem_base; unsigned long mem_base = (unsigned long)lg->mem_base;
unsigned int mapped_pages, i, linear_pages;
#ifdef CONFIG_X86_PAE
pmd_t __user *pmds;
unsigned int j;
pgd_t pgd;
pmd_t pmd;
#else
unsigned int phys_linear;
#endif
/* We have mapped_pages frames to map, so we need /* We have mapped_pages frames to map, so we need
* linear_pages page tables to map them. */ * linear_pages page tables to map them. */
@@ -610,6 +836,9 @@ static unsigned long setup_pagetables(struct lguest *lg,
/* Now we use the next linear_pages pages as pte pages */ /* Now we use the next linear_pages pages as pte pages */
linear = (void *)pgdir - linear_pages * PAGE_SIZE; linear = (void *)pgdir - linear_pages * PAGE_SIZE;
#ifdef CONFIG_X86_PAE
pmds = (void *)linear - PAGE_SIZE;
#endif
/* Linear mapping is easy: put every page's address into the /* Linear mapping is easy: put every page's address into the
* mapping in order. */ * mapping in order. */
for (i = 0; i < mapped_pages; i++) { for (i = 0; i < mapped_pages; i++) {
@@ -621,6 +850,22 @@ static unsigned long setup_pagetables(struct lguest *lg,
/* The top level points to the linear page table pages above. /* The top level points to the linear page table pages above.
* We setup the identity and linear mappings here. */ * We setup the identity and linear mappings here. */
#ifdef CONFIG_X86_PAE
for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
i += PTRS_PER_PTE, j++) {
native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
- mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
return -EFAULT;
}
set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
return -EFAULT;
if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
return -EFAULT;
#else
phys_linear = (unsigned long)linear - mem_base; phys_linear = (unsigned long)linear - mem_base;
for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
pgd_t pgd; pgd_t pgd;
@@ -633,6 +878,7 @@ static unsigned long setup_pagetables(struct lguest *lg,
&pgd, sizeof(pgd))) &pgd, sizeof(pgd)))
return -EFAULT; return -EFAULT;
} }
#endif
/* We return the top level (guest-physical) address: remember where /* We return the top level (guest-physical) address: remember where
* this is. */ * this is. */
@@ -648,7 +894,10 @@ int init_guest_pagetable(struct lguest *lg)
u64 mem; u64 mem;
u32 initrd_size; u32 initrd_size;
struct boot_params __user *boot = (struct boot_params *)lg->mem_base; struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
#ifdef CONFIG_X86_PAE
pgd_t *pgd;
pmd_t *pmd_table;
#endif
/* Get the Guest memory size and the ramdisk size from the boot header /* Get the Guest memory size and the ramdisk size from the boot header
* located at lg->mem_base (Guest address 0). */ * located at lg->mem_base (Guest address 0). */
if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem)) if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
@@ -663,6 +912,15 @@ int init_guest_pagetable(struct lguest *lg)
lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
if (!lg->pgdirs[0].pgdir) if (!lg->pgdirs[0].pgdir)
return -ENOMEM; return -ENOMEM;
#ifdef CONFIG_X86_PAE
pgd = lg->pgdirs[0].pgdir;
pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
if (!pmd_table)
return -ENOMEM;
set_pgd(pgd + SWITCHER_PGD_INDEX,
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
#endif
lg->cpus[0].cpu_pgd = 0; lg->cpus[0].cpu_pgd = 0;
return 0; return 0;
} }
@@ -673,16 +931,23 @@ void page_table_guest_data_init(struct lg_cpu *cpu)
/* We get the kernel address: above this is all kernel memory. */ /* We get the kernel address: above this is all kernel memory. */
if (get_user(cpu->lg->kernel_address, if (get_user(cpu->lg->kernel_address,
&cpu->lg->lguest_data->kernel_address) &cpu->lg->lguest_data->kernel_address)
/* We tell the Guest that it can't use the top 4MB of virtual /* We tell the Guest that it can't use the top 2 or 4 MB
* addresses used by the Switcher. */ * of virtual addresses used by the Switcher. */
|| put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem) || put_user(RESERVE_MEM * 1024 * 1024,
|| put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir)) &cpu->lg->lguest_data->reserve_mem)
|| put_user(cpu->lg->pgdirs[0].gpgdir,
&cpu->lg->lguest_data->pgdir))
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
/* In flush_user_mappings() we loop from 0 to /* In flush_user_mappings() we loop from 0 to
* "pgd_index(lg->kernel_address)". This assumes it won't hit the * "pgd_index(lg->kernel_address)". This assumes it won't hit the
* Switcher mappings, so check that now. */ * Switcher mappings, so check that now. */
#ifdef CONFIG_X86_PAE
if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
#else
if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX) if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
#endif
kill_guest(cpu, "bad kernel address %#lx", kill_guest(cpu, "bad kernel address %#lx",
cpu->lg->kernel_address); cpu->lg->kernel_address);
} }
@@ -708,16 +973,30 @@ void free_guest_pagetable(struct lguest *lg)
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
{ {
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
pgd_t switcher_pgd;
pte_t regs_pte; pte_t regs_pte;
unsigned long pfn; unsigned long pfn;
#ifdef CONFIG_X86_PAE
pmd_t switcher_pmd;
pmd_t *pmd_table;
native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
PAGE_SHIFT, PAGE_KERNEL_EXEC));
pmd_table = __va(pgd_pfn(cpu->lg->
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
<< PAGE_SHIFT);
native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
#else
pgd_t switcher_pgd;
/* Make the last PGD entry for this Guest point to the Switcher's PTE /* Make the last PGD entry for this Guest point to the Switcher's PTE
* page for this CPU (with appropriate flags). */ * page for this CPU (with appropriate flags). */
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL); switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
#endif
/* We also change the Switcher PTE page. When we're running the Guest, /* We also change the Switcher PTE page. When we're running the Guest,
* we want the Guest's "regs" page to appear where the first Switcher * we want the Guest's "regs" page to appear where the first Switcher
* page for this CPU is. This is an optimization: when the Switcher * page for this CPU is. This is an optimization: when the Switcher
@@ -726,8 +1005,9 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
* page is already mapped there, we don't have to copy them out * page is already mapped there, we don't have to copy them out
* again. */ * again. */
pfn = __pa(cpu->regs_page) >> PAGE_SHIFT; pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL)); native_set_pte(&regs_pte, pfn_pte(pfn, PAGE_KERNEL));
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte; native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
regs_pte);
} }
/*:*/ /*:*/
@@ -752,21 +1032,21 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
/* The first entries are easy: they map the Switcher code. */ /* The first entries are easy: they map the Switcher code. */
for (i = 0; i < pages; i++) { for (i = 0; i < pages; i++) {
pte[i] = mk_pte(switcher_page[i], native_set_pte(&pte[i], mk_pte(switcher_page[i],
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)); __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
} }
/* The only other thing we map is this CPU's pair of pages. */ /* The only other thing we map is this CPU's pair of pages. */
i = pages + cpu*2; i = pages + cpu*2;
/* First page (Guest registers) is writable from the Guest */ /* First page (Guest registers) is writable from the Guest */
pte[i] = pfn_pte(page_to_pfn(switcher_page[i]), native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)); __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
/* The second page contains the "struct lguest_ro_state", and is /* The second page contains the "struct lguest_ro_state", and is
* read-only. */ * read-only. */
pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]), native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)); __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
} }
/* We've made it through the page table code. Perhaps our tired brains are /* We've made it through the page table code. Perhaps our tired brains are

View File

@@ -150,7 +150,7 @@ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
{ {
/* We assume the Guest has the same number of GDT entries as the /* We assume the Guest has the same number of GDT entries as the
* Host, otherwise we'd have to dynamically allocate the Guest GDT. */ * Host, otherwise we'd have to dynamically allocate the Guest GDT. */
if (num > ARRAY_SIZE(cpu->arch.gdt)) if (num >= ARRAY_SIZE(cpu->arch.gdt))
kill_guest(cpu, "too many gdt entries %i", num); kill_guest(cpu, "too many gdt entries %i", num);
/* Set it up, then fix it. */ /* Set it up, then fix it. */

View File

@@ -16,6 +16,7 @@
#include <linux/anon_inodes.h> #include <linux/anon_inodes.h>
#include <linux/eventfd.h> #include <linux/eventfd.h>
#include <linux/syscalls.h> #include <linux/syscalls.h>
#include <linux/module.h>
struct eventfd_ctx { struct eventfd_ctx {
wait_queue_head_t wqh; wait_queue_head_t wqh;
@@ -56,6 +57,7 @@ int eventfd_signal(struct file *file, int n)
return n; return n;
} }
EXPORT_SYMBOL_GPL(eventfd_signal);
static int eventfd_release(struct inode *inode, struct file *file) static int eventfd_release(struct inode *inode, struct file *file)
{ {
@@ -197,6 +199,7 @@ struct file *eventfd_fget(int fd)
return file; return file;
} }
EXPORT_SYMBOL_GPL(eventfd_fget);
SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags) SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags)
{ {

View File

@@ -30,6 +30,10 @@ struct lguest_data
/* Wallclock time set by the Host. */ /* Wallclock time set by the Host. */
struct timespec time; struct timespec time;
/* Interrupt pending set by the Host. The Guest should do a hypercall
* if it re-enables interrupts and sees this set (to X86_EFLAGS_IF). */
int irq_pending;
/* Async hypercall ring. Instead of directly making hypercalls, we can /* Async hypercall ring. Instead of directly making hypercalls, we can
* place them in here for processing the next time the Host wants. * place them in here for processing the next time the Host wants.
* This batching can be quite efficient. */ * This batching can be quite efficient. */

View File

@@ -57,7 +57,8 @@ enum lguest_req
LHREQ_INITIALIZE, /* + base, pfnlimit, start */ LHREQ_INITIALIZE, /* + base, pfnlimit, start */
LHREQ_GETDMA, /* No longer used */ LHREQ_GETDMA, /* No longer used */
LHREQ_IRQ, /* + irq */ LHREQ_IRQ, /* + irq */
LHREQ_BREAK, /* + on/off flag (on blocks until someone does off) */ LHREQ_BREAK, /* No longer used */
LHREQ_EVENTFD, /* + address, fd. */
}; };
/* The alignment to use between consumer and producer parts of vring. /* The alignment to use between consumer and producer parts of vring.

View File

@@ -2192,6 +2192,7 @@ void kick_process(struct task_struct *p)
smp_send_reschedule(cpu); smp_send_reschedule(cpu);
preempt_enable(); preempt_enable();
} }
EXPORT_SYMBOL_GPL(kick_process);
/* /*
* Return a low guess at the load of a migration-source cpu weighted * Return a low guess at the load of a migration-source cpu weighted