x86,percpu: generalize lpage first chunk allocator

Generalize and move x86 setup_pcpu_lpage() into
pcpu_lpage_first_chunk().  setup_pcpu_lpage() now is a simple wrapper
around the generalized version.  Other than taking size parameters and
using arch supplied callbacks to allocate/free/map memory,
pcpu_lpage_first_chunk() is identical to the original implementation.

This simplifies arch code and will help converting more archs to
dynamic percpu allocator.

While at it, factor out pcpu_calc_fc_sizes() which is common to
pcpu_embed_first_chunk() and pcpu_lpage_first_chunk().

[ Impact: code reorganization and generalization ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Tejun Heo
2009-07-04 08:10:59 +09:00
parent 8f05a6a65d
commit 8c4bfc6e88
5 changed files with 244 additions and 171 deletions

View File

@@ -1190,6 +1190,19 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
return pcpu_unit_size;
}
static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
ssize_t *dyn_sizep)
{
size_t size_sum;
size_sum = PFN_ALIGN(static_size + reserved_size +
(*dyn_sizep >= 0 ? *dyn_sizep : 0));
if (*dyn_sizep != 0)
*dyn_sizep = size_sum - static_size - reserved_size;
return size_sum;
}
/*
* Embedding first chunk setup helper.
*/
@@ -1241,10 +1254,7 @@ ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
unsigned int cpu;
/* determine parameters and allocate */
pcpue_size = PFN_ALIGN(static_size + reserved_size +
(dyn_size >= 0 ? dyn_size : 0));
if (dyn_size != 0)
dyn_size = pcpue_size - static_size - reserved_size;
pcpue_size = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
chunk_size = pcpue_unit_size * num_possible_cpus();
@@ -1390,6 +1400,197 @@ out_free_ar:
return ret;
}
/*
* Large page remapping first chunk setup helper
*/
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pcpul_ent {
unsigned int cpu;
void *ptr;
};
static size_t pcpul_size;
static size_t pcpul_unit_size;
static struct pcpul_ent *pcpul_map;
static struct vm_struct pcpul_vm;
static struct page * __init pcpul_get_page(unsigned int cpu, int pageno)
{
size_t off = (size_t)pageno << PAGE_SHIFT;
if (off >= pcpul_size)
return NULL;
return virt_to_page(pcpul_map[cpu].ptr + off);
}
/**
* pcpu_lpage_first_chunk - remap the first percpu chunk using large page
* @static_size: the size of static percpu area in bytes
* @reserved_size: the size of reserved percpu area in bytes
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
* @lpage_size: the size of a large page
* @alloc_fn: function to allocate percpu lpage, always called with lpage_size
* @free_fn: function to free percpu memory, @size <= lpage_size
* @map_fn: function to map percpu lpage, always called with lpage_size
*
* This allocator uses large page as unit. A large page is allocated
* for each cpu and each is remapped into vmalloc area using large
* page mapping. As large page can be quite large, only part of it is
* used for the first chunk. Unused part is returned to the bootmem
* allocator.
*
* So, the large pages are mapped twice - once to the physical mapping
* and to the vmalloc area for the first percpu chunk. The double
* mapping does add one more large TLB entry pressure but still is
* much better than only using 4k mappings while still being NUMA
* friendly.
*
* RETURNS:
* The determined pcpu_unit_size which can be used to initialize
* percpu access on success, -errno on failure.
*/
ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
ssize_t dyn_size, size_t lpage_size,
pcpu_fc_alloc_fn_t alloc_fn,
pcpu_fc_free_fn_t free_fn,
pcpu_fc_map_fn_t map_fn)
{
size_t size_sum;
size_t map_size;
unsigned int cpu;
int i, j;
ssize_t ret;
/*
* Currently supports only single page. Supporting multiple
* pages won't be too difficult if it ever becomes necessary.
*/
size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
pcpul_unit_size = lpage_size;
pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
if (pcpul_size > pcpul_unit_size) {
pr_warning("PERCPU: static data is larger than large page, "
"can't use large page\n");
return -EINVAL;
}
/* allocate pointer array and alloc large pages */
map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
pcpul_map = alloc_bootmem(map_size);
for_each_possible_cpu(cpu) {
void *ptr;
ptr = alloc_fn(cpu, lpage_size);
if (!ptr) {
pr_warning("PERCPU: failed to allocate large page "
"for cpu%u\n", cpu);
goto enomem;
}
/*
* Only use pcpul_size bytes and give back the rest.
*
* Ingo: The lpage_size up-rounding bootmem is needed
* to make sure the partial lpage is still fully RAM -
* it's not well-specified to have a incompatible area
* (unmapped RAM, device memory, etc.) in that hole.
*/
free_fn(ptr + pcpul_size, lpage_size - pcpul_size);
pcpul_map[cpu].cpu = cpu;
pcpul_map[cpu].ptr = ptr;
memcpy(ptr, __per_cpu_load, static_size);
}
/* allocate address and map */
pcpul_vm.flags = VM_ALLOC;
pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
vm_area_register_early(&pcpul_vm, pcpul_unit_size);
for_each_possible_cpu(cpu)
map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
pcpul_vm.addr + cpu * pcpul_unit_size);
/* we're ready, commit */
pr_info("PERCPU: Remapped at %p with large pages, static data "
"%zu bytes\n", pcpul_vm.addr, static_size);
ret = pcpu_setup_first_chunk(pcpul_get_page, static_size,
reserved_size, dyn_size, pcpul_unit_size,
pcpul_vm.addr, NULL);
/* sort pcpul_map array for pcpu_lpage_remapped() */
for (i = 0; i < num_possible_cpus() - 1; i++)
for (j = i + 1; j < num_possible_cpus(); j++)
if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
struct pcpul_ent tmp = pcpul_map[i];
pcpul_map[i] = pcpul_map[j];
pcpul_map[j] = tmp;
}
return ret;
enomem:
for_each_possible_cpu(cpu)
if (pcpul_map[cpu].ptr)
free_fn(pcpul_map[cpu].ptr, pcpul_size);
free_bootmem(__pa(pcpul_map), map_size);
return -ENOMEM;
}
/**
* pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
* @kaddr: the kernel address in question
*
* Determine whether @kaddr falls in the pcpul recycled area. This is
* used by pageattr to detect VM aliases and break up the pcpu large
* page mapping such that the same physical page is not mapped under
* different attributes.
*
* The recycled area is always at the tail of a partially used large
* page.
*
* RETURNS:
* Address of corresponding remapped pcpu address if match is found;
* otherwise, NULL.
*/
void *pcpu_lpage_remapped(void *kaddr)
{
unsigned long unit_mask = pcpul_unit_size - 1;
void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
unsigned long offset = (unsigned long)kaddr & unit_mask;
int left = 0, right = num_possible_cpus() - 1;
int pos;
/* pcpul in use at all? */
if (!pcpul_map)
return NULL;
/* okay, perform binary search */
while (left <= right) {
pos = (left + right) / 2;
if (pcpul_map[pos].ptr < lpage_addr)
left = pos + 1;
else if (pcpul_map[pos].ptr > lpage_addr)
right = pos - 1;
else {
/* it shouldn't be in the area for the first chunk */
WARN_ON(offset < pcpul_size);
return pcpul_vm.addr +
pcpul_map[pos].cpu * pcpul_unit_size + offset;
}
}
return NULL;
}
#endif
/*
* Generic percpu area setup.
*