ocfs2: teach ocfs2_file_aio_write() about sparse files
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock() because allocating writes will require zeroing of pages adjacent to the I/O for cluster sizes greater than page size. Implement a custom file write here, which can order page locks for zeroing. This also has the advantage that cluster locks can easily be ordered outside of the page locks. Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This commit is contained in:
679
fs/ocfs2/aops.c
679
fs/ocfs2/aops.c
@@ -24,6 +24,7 @@
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <linux/swap.h>
|
||||
|
||||
#define MLOG_MASK_PREFIX ML_FILE_IO
|
||||
#include <cluster/masklog.h>
|
||||
@@ -37,6 +38,7 @@
|
||||
#include "file.h"
|
||||
#include "inode.h"
|
||||
#include "journal.h"
|
||||
#include "suballoc.h"
|
||||
#include "super.h"
|
||||
#include "symlink.h"
|
||||
|
||||
@@ -645,23 +647,27 @@ static ssize_t ocfs2_direct_IO(int rw,
|
||||
|
||||
mlog_entry_void();
|
||||
|
||||
/*
|
||||
* We get PR data locks even for O_DIRECT. This allows
|
||||
* concurrent O_DIRECT I/O but doesn't let O_DIRECT with
|
||||
* extending and buffered zeroing writes race. If they did
|
||||
* race then the buffered zeroing could be written back after
|
||||
* the O_DIRECT I/O. It's one thing to tell people not to mix
|
||||
* buffered and O_DIRECT writes, but expecting them to
|
||||
* understand that file extension is also an implicit buffered
|
||||
* write is too much. By getting the PR we force writeback of
|
||||
* the buffered zeroing before proceeding.
|
||||
*/
|
||||
ret = ocfs2_data_lock(inode, 0);
|
||||
if (ret < 0) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
|
||||
/*
|
||||
* We get PR data locks even for O_DIRECT. This
|
||||
* allows concurrent O_DIRECT I/O but doesn't let
|
||||
* O_DIRECT with extending and buffered zeroing writes
|
||||
* race. If they did race then the buffered zeroing
|
||||
* could be written back after the O_DIRECT I/O. It's
|
||||
* one thing to tell people not to mix buffered and
|
||||
* O_DIRECT writes, but expecting them to understand
|
||||
* that file extension is also an implicit buffered
|
||||
* write is too much. By getting the PR we force
|
||||
* writeback of the buffered zeroing before
|
||||
* proceeding.
|
||||
*/
|
||||
ret = ocfs2_data_lock(inode, 0);
|
||||
if (ret < 0) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
ocfs2_data_unlock(inode, 0);
|
||||
}
|
||||
ocfs2_data_unlock(inode, 0);
|
||||
|
||||
ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
|
||||
inode->i_sb->s_bdev, iov, offset,
|
||||
@@ -673,6 +679,647 @@ out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
|
||||
u32 cpos,
|
||||
unsigned int *start,
|
||||
unsigned int *end)
|
||||
{
|
||||
unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
|
||||
|
||||
if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
|
||||
unsigned int cpp;
|
||||
|
||||
cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
|
||||
|
||||
cluster_start = cpos % cpp;
|
||||
cluster_start = cluster_start << osb->s_clustersize_bits;
|
||||
|
||||
cluster_end = cluster_start + osb->s_clustersize;
|
||||
}
|
||||
|
||||
BUG_ON(cluster_start > PAGE_SIZE);
|
||||
BUG_ON(cluster_end > PAGE_SIZE);
|
||||
|
||||
if (start)
|
||||
*start = cluster_start;
|
||||
if (end)
|
||||
*end = cluster_end;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'from' and 'to' are the region in the page to avoid zeroing.
|
||||
*
|
||||
* If pagesize > clustersize, this function will avoid zeroing outside
|
||||
* of the cluster boundary.
|
||||
*
|
||||
* from == to == 0 is code for "zero the entire cluster region"
|
||||
*/
|
||||
static void ocfs2_clear_page_regions(struct page *page,
|
||||
struct ocfs2_super *osb, u32 cpos,
|
||||
unsigned from, unsigned to)
|
||||
{
|
||||
void *kaddr;
|
||||
unsigned int cluster_start, cluster_end;
|
||||
|
||||
ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
|
||||
|
||||
kaddr = kmap_atomic(page, KM_USER0);
|
||||
|
||||
if (from || to) {
|
||||
if (from > cluster_start)
|
||||
memset(kaddr + cluster_start, 0, from - cluster_start);
|
||||
if (to < cluster_end)
|
||||
memset(kaddr + to, 0, cluster_end - to);
|
||||
} else {
|
||||
memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
|
||||
}
|
||||
|
||||
kunmap_atomic(kaddr, KM_USER0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Some of this taken from block_prepare_write(). We already have our
|
||||
* mapping by now though, and the entire write will be allocating or
|
||||
* it won't, so not much need to use BH_New.
|
||||
*
|
||||
* This will also skip zeroing, which is handled externally.
|
||||
*/
|
||||
static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
|
||||
struct inode *inode, unsigned int from,
|
||||
unsigned int to, int new)
|
||||
{
|
||||
int ret = 0;
|
||||
struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
|
||||
unsigned int block_end, block_start;
|
||||
unsigned int bsize = 1 << inode->i_blkbits;
|
||||
|
||||
if (!page_has_buffers(page))
|
||||
create_empty_buffers(page, bsize, 0);
|
||||
|
||||
head = page_buffers(page);
|
||||
for (bh = head, block_start = 0; bh != head || !block_start;
|
||||
bh = bh->b_this_page, block_start += bsize) {
|
||||
block_end = block_start + bsize;
|
||||
|
||||
/*
|
||||
* Ignore blocks outside of our i/o range -
|
||||
* they may belong to unallocated clusters.
|
||||
*/
|
||||
if (block_start >= to ||
|
||||
(block_start + bsize) <= from) {
|
||||
if (PageUptodate(page))
|
||||
set_buffer_uptodate(bh);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* For an allocating write with cluster size >= page
|
||||
* size, we always write the entire page.
|
||||
*/
|
||||
|
||||
if (buffer_new(bh))
|
||||
clear_buffer_new(bh);
|
||||
|
||||
if (!buffer_mapped(bh)) {
|
||||
map_bh(bh, inode->i_sb, *p_blkno);
|
||||
unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
|
||||
}
|
||||
|
||||
if (PageUptodate(page)) {
|
||||
if (!buffer_uptodate(bh))
|
||||
set_buffer_uptodate(bh);
|
||||
} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
|
||||
(block_start < from || block_end > to)) {
|
||||
ll_rw_block(READ, 1, &bh);
|
||||
*wait_bh++=bh;
|
||||
}
|
||||
|
||||
*p_blkno = *p_blkno + 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we issued read requests - let them complete.
|
||||
*/
|
||||
while(wait_bh > wait) {
|
||||
wait_on_buffer(*--wait_bh);
|
||||
if (!buffer_uptodate(*wait_bh))
|
||||
ret = -EIO;
|
||||
}
|
||||
|
||||
if (ret == 0 || !new)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* If we get -EIO above, zero out any newly allocated blocks
|
||||
* to avoid exposing stale data.
|
||||
*/
|
||||
bh = head;
|
||||
block_start = 0;
|
||||
do {
|
||||
void *kaddr;
|
||||
|
||||
block_end = block_start + bsize;
|
||||
if (block_end <= from)
|
||||
goto next_bh;
|
||||
if (block_start >= to)
|
||||
break;
|
||||
|
||||
kaddr = kmap_atomic(page, KM_USER0);
|
||||
memset(kaddr+block_start, 0, bh->b_size);
|
||||
flush_dcache_page(page);
|
||||
kunmap_atomic(kaddr, KM_USER0);
|
||||
set_buffer_uptodate(bh);
|
||||
mark_buffer_dirty(bh);
|
||||
|
||||
next_bh:
|
||||
block_start = block_end;
|
||||
bh = bh->b_this_page;
|
||||
} while (bh != head);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* This will copy user data from the iovec in the buffered write
|
||||
* context.
|
||||
*/
|
||||
int ocfs2_map_and_write_user_data(struct inode *inode,
|
||||
struct ocfs2_write_ctxt *wc, u64 *p_blkno,
|
||||
unsigned int *ret_from, unsigned int *ret_to)
|
||||
{
|
||||
int ret;
|
||||
unsigned int to, from, cluster_start, cluster_end;
|
||||
unsigned long bytes, src_from;
|
||||
char *dst;
|
||||
struct ocfs2_buffered_write_priv *bp = wc->w_private;
|
||||
const struct iovec *cur_iov = bp->b_cur_iov;
|
||||
char __user *buf;
|
||||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||||
|
||||
ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
|
||||
&cluster_end);
|
||||
|
||||
buf = cur_iov->iov_base + bp->b_cur_off;
|
||||
src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
|
||||
|
||||
from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
|
||||
|
||||
/*
|
||||
* This is a lot of comparisons, but it reads quite
|
||||
* easily, which is important here.
|
||||
*/
|
||||
/* Stay within the src page */
|
||||
bytes = PAGE_SIZE - src_from;
|
||||
/* Stay within the vector */
|
||||
bytes = min(bytes,
|
||||
(unsigned long)(cur_iov->iov_len - bp->b_cur_off));
|
||||
/* Stay within count */
|
||||
bytes = min(bytes, (unsigned long)wc->w_count);
|
||||
/*
|
||||
* For clustersize > page size, just stay within
|
||||
* target page, otherwise we have to calculate pos
|
||||
* within the cluster and obey the rightmost
|
||||
* boundary.
|
||||
*/
|
||||
if (wc->w_large_pages) {
|
||||
/*
|
||||
* For cluster size < page size, we have to
|
||||
* calculate pos within the cluster and obey
|
||||
* the rightmost boundary.
|
||||
*/
|
||||
bytes = min(bytes, (unsigned long)(osb->s_clustersize
|
||||
- (wc->w_pos & (osb->s_clustersize - 1))));
|
||||
} else {
|
||||
/*
|
||||
* cluster size > page size is the most common
|
||||
* case - we just stay within the target page
|
||||
* boundary.
|
||||
*/
|
||||
bytes = min(bytes, PAGE_CACHE_SIZE - from);
|
||||
}
|
||||
|
||||
to = from + bytes;
|
||||
|
||||
if (wc->w_this_page_new)
|
||||
ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
||||
cluster_start, cluster_end, 1);
|
||||
else
|
||||
ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
||||
from, to, 0);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
BUG_ON(from > PAGE_CACHE_SIZE);
|
||||
BUG_ON(to > PAGE_CACHE_SIZE);
|
||||
BUG_ON(from > osb->s_clustersize);
|
||||
BUG_ON(to > osb->s_clustersize);
|
||||
|
||||
dst = kmap(wc->w_this_page);
|
||||
memcpy(dst + from, bp->b_src_buf + src_from, bytes);
|
||||
kunmap(wc->w_this_page);
|
||||
|
||||
/*
|
||||
* XXX: This is slow, but simple. The caller of
|
||||
* ocfs2_buffered_write_cluster() is responsible for
|
||||
* passing through the iovecs, so it's difficult to
|
||||
* predict what our next step is in here after our
|
||||
* initial write. A future version should be pushing
|
||||
* that iovec manipulation further down.
|
||||
*
|
||||
* By setting this, we indicate that a copy from user
|
||||
* data was done, and subsequent calls for this
|
||||
* cluster will skip copying more data.
|
||||
*/
|
||||
wc->w_finished_copy = 1;
|
||||
|
||||
*ret_from = from;
|
||||
*ret_to = to;
|
||||
out:
|
||||
|
||||
return bytes ? (unsigned int)bytes : ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Map, fill and write a page to disk.
|
||||
*
|
||||
* The work of copying data is done via callback. Newly allocated
|
||||
* pages which don't take user data will be zero'd (set 'new' to
|
||||
* indicate an allocating write)
|
||||
*
|
||||
* Returns a negative error code or the number of bytes copied into
|
||||
* the page.
|
||||
*/
|
||||
int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
|
||||
u64 *p_blkno, struct page *page,
|
||||
struct ocfs2_write_ctxt *wc, int new)
|
||||
{
|
||||
int ret, copied = 0;
|
||||
unsigned int from = 0, to = 0;
|
||||
unsigned int cluster_start, cluster_end;
|
||||
unsigned int zero_from = 0, zero_to = 0;
|
||||
|
||||
ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
|
||||
&cluster_start, &cluster_end);
|
||||
|
||||
if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
|
||||
&& !wc->w_finished_copy) {
|
||||
|
||||
wc->w_this_page = page;
|
||||
wc->w_this_page_new = new;
|
||||
ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
|
||||
if (ret < 0) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
copied = ret;
|
||||
|
||||
zero_from = from;
|
||||
zero_to = to;
|
||||
if (new) {
|
||||
from = cluster_start;
|
||||
to = cluster_end;
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* If we haven't allocated the new page yet, we
|
||||
* shouldn't be writing it out without copying user
|
||||
* data. This is likely a math error from the caller.
|
||||
*/
|
||||
BUG_ON(!new);
|
||||
|
||||
from = cluster_start;
|
||||
to = cluster_end;
|
||||
|
||||
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
||||
cluster_start, cluster_end, 1);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Parts of newly allocated pages need to be zero'd.
|
||||
*
|
||||
* Above, we have also rewritten 'to' and 'from' - as far as
|
||||
* the rest of the function is concerned, the entire cluster
|
||||
* range inside of a page needs to be written.
|
||||
*
|
||||
* We can skip this if the page is up to date - it's already
|
||||
* been zero'd from being read in as a hole.
|
||||
*/
|
||||
if (new && !PageUptodate(page))
|
||||
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
|
||||
wc->w_cpos, zero_from, zero_to);
|
||||
|
||||
flush_dcache_page(page);
|
||||
|
||||
if (ocfs2_should_order_data(inode)) {
|
||||
ret = walk_page_buffers(handle,
|
||||
page_buffers(page),
|
||||
from, to, NULL,
|
||||
ocfs2_journal_dirty_data);
|
||||
if (ret < 0)
|
||||
mlog_errno(ret);
|
||||
}
|
||||
|
||||
/*
|
||||
* We don't use generic_commit_write() because we need to
|
||||
* handle our own i_size update.
|
||||
*/
|
||||
ret = block_commit_write(page, from, to);
|
||||
if (ret)
|
||||
mlog_errno(ret);
|
||||
out:
|
||||
|
||||
return copied ? copied : ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do the actual write of some data into an inode. Optionally allocate
|
||||
* in order to fulfill the write.
|
||||
*
|
||||
* cpos is the logical cluster offset within the file to write at
|
||||
*
|
||||
* 'phys' is the physical mapping of that offset. a 'phys' value of
|
||||
* zero indicates that allocation is required. In this case, data_ac
|
||||
* and meta_ac should be valid (meta_ac can be null if metadata
|
||||
* allocation isn't required).
|
||||
*/
|
||||
static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
|
||||
struct buffer_head *di_bh,
|
||||
struct ocfs2_alloc_context *data_ac,
|
||||
struct ocfs2_alloc_context *meta_ac,
|
||||
struct ocfs2_write_ctxt *wc)
|
||||
{
|
||||
int ret, i, numpages = 1, new;
|
||||
unsigned int copied = 0;
|
||||
u32 tmp_pos;
|
||||
u64 v_blkno, p_blkno;
|
||||
struct address_space *mapping = file->f_mapping;
|
||||
struct inode *inode = mapping->host;
|
||||
unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits;
|
||||
unsigned long index, start;
|
||||
struct page **cpages;
|
||||
|
||||
new = phys == 0 ? 1 : 0;
|
||||
|
||||
/*
|
||||
* Figure out how many pages we'll be manipulating here. For
|
||||
* non-allocating write, or any writes where cluster size is
|
||||
* less than page size, we only need one page. Otherwise,
|
||||
* allocating writes of cluster size larger than page size
|
||||
* need cluster size pages.
|
||||
*/
|
||||
if (new && !wc->w_large_pages)
|
||||
numpages = (1 << cbits) / PAGE_SIZE;
|
||||
|
||||
cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
|
||||
if (!cpages) {
|
||||
ret = -ENOMEM;
|
||||
mlog_errno(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill our page array first. That way we've grabbed enough so
|
||||
* that we can zero and flush if we error after adding the
|
||||
* extent.
|
||||
*/
|
||||
if (new) {
|
||||
start = ocfs2_align_clusters_to_page_index(inode->i_sb,
|
||||
wc->w_cpos);
|
||||
v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
|
||||
} else {
|
||||
start = wc->w_pos >> PAGE_CACHE_SHIFT;
|
||||
v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
|
||||
}
|
||||
|
||||
for(i = 0; i < numpages; i++) {
|
||||
index = start + i;
|
||||
|
||||
cpages[i] = grab_cache_page(mapping, index);
|
||||
if (!cpages[i]) {
|
||||
ret = -ENOMEM;
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
if (new) {
|
||||
/*
|
||||
* This is safe to call with the page locks - it won't take
|
||||
* any additional semaphores or cluster locks.
|
||||
*/
|
||||
tmp_pos = wc->w_cpos;
|
||||
ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
|
||||
&tmp_pos, 1, di_bh, handle,
|
||||
data_ac, meta_ac, NULL);
|
||||
/*
|
||||
* This shouldn't happen because we must have already
|
||||
* calculated the correct meta data allocation required. The
|
||||
* internal tree allocation code should know how to increase
|
||||
* transaction credits itself.
|
||||
*
|
||||
* If need be, we could handle -EAGAIN for a
|
||||
* RESTART_TRANS here.
|
||||
*/
|
||||
mlog_bug_on_msg(ret == -EAGAIN,
|
||||
"Inode %llu: EAGAIN return during allocation.\n",
|
||||
(unsigned long long)OCFS2_I(inode)->ip_blkno);
|
||||
if (ret < 0) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
|
||||
if (ret < 0) {
|
||||
|
||||
/*
|
||||
* XXX: Should we go readonly here?
|
||||
*/
|
||||
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
BUG_ON(p_blkno == 0);
|
||||
|
||||
for(i = 0; i < numpages; i++) {
|
||||
ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
|
||||
wc, new);
|
||||
if (ret < 0) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
copied += ret;
|
||||
}
|
||||
|
||||
out:
|
||||
for(i = 0; i < numpages; i++) {
|
||||
unlock_page(cpages[i]);
|
||||
mark_page_accessed(cpages[i]);
|
||||
page_cache_release(cpages[i]);
|
||||
}
|
||||
kfree(cpages);
|
||||
|
||||
return copied ? copied : ret;
|
||||
}
|
||||
|
||||
static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
|
||||
struct ocfs2_super *osb, loff_t pos,
|
||||
size_t count, ocfs2_page_writer *cb,
|
||||
void *cb_priv)
|
||||
{
|
||||
wc->w_count = count;
|
||||
wc->w_pos = pos;
|
||||
wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
|
||||
wc->w_finished_copy = 0;
|
||||
|
||||
if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
|
||||
wc->w_large_pages = 1;
|
||||
else
|
||||
wc->w_large_pages = 0;
|
||||
|
||||
wc->w_write_data_page = cb;
|
||||
wc->w_private = cb_priv;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a cluster to an inode. The cluster may not be allocated yet,
|
||||
* in which case it will be. This only exists for buffered writes -
|
||||
* O_DIRECT takes a more "traditional" path through the kernel.
|
||||
*
|
||||
* The caller is responsible for incrementing pos, written counts, etc
|
||||
*
|
||||
* For file systems that don't support sparse files, pre-allocation
|
||||
* and page zeroing up until cpos should be done prior to this
|
||||
* function call.
|
||||
*
|
||||
* Callers should be holding i_sem, and the rw cluster lock.
|
||||
*
|
||||
* Returns the number of user bytes written, or less than zero for
|
||||
* error.
|
||||
*/
|
||||
ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
|
||||
size_t count, ocfs2_page_writer *actor,
|
||||
void *priv)
|
||||
{
|
||||
int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
|
||||
ssize_t written = 0;
|
||||
u32 phys;
|
||||
struct inode *inode = file->f_mapping->host;
|
||||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||||
struct buffer_head *di_bh = NULL;
|
||||
struct ocfs2_dinode *di;
|
||||
struct ocfs2_alloc_context *data_ac = NULL;
|
||||
struct ocfs2_alloc_context *meta_ac = NULL;
|
||||
handle_t *handle;
|
||||
struct ocfs2_write_ctxt wc;
|
||||
|
||||
ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
|
||||
|
||||
ret = ocfs2_meta_lock(inode, &di_bh, 1);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
di = (struct ocfs2_dinode *)di_bh->b_data;
|
||||
|
||||
/*
|
||||
* Take alloc sem here to prevent concurrent lookups. That way
|
||||
* the mapping, zeroing and tree manipulation within
|
||||
* ocfs2_write() will be safe against ->readpage(). This
|
||||
* should also serve to lock out allocation from a shared
|
||||
* writeable region.
|
||||
*/
|
||||
down_write(&OCFS2_I(inode)->ip_alloc_sem);
|
||||
|
||||
ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out_meta;
|
||||
}
|
||||
|
||||
/* phys == 0 means that allocation is required. */
|
||||
if (phys == 0) {
|
||||
ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out_meta;
|
||||
}
|
||||
|
||||
credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
|
||||
}
|
||||
|
||||
ret = ocfs2_data_lock(inode, 1);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out_meta;
|
||||
}
|
||||
|
||||
handle = ocfs2_start_trans(osb, credits);
|
||||
if (IS_ERR(handle)) {
|
||||
ret = PTR_ERR(handle);
|
||||
mlog_errno(ret);
|
||||
goto out_data;
|
||||
}
|
||||
|
||||
written = ocfs2_write(file, phys, handle, di_bh, data_ac,
|
||||
meta_ac, &wc);
|
||||
if (written < 0) {
|
||||
ret = written;
|
||||
mlog_errno(ret);
|
||||
goto out_commit;
|
||||
}
|
||||
|
||||
ret = ocfs2_journal_access(handle, inode, di_bh,
|
||||
OCFS2_JOURNAL_ACCESS_WRITE);
|
||||
if (ret) {
|
||||
mlog_errno(ret);
|
||||
goto out_commit;
|
||||
}
|
||||
|
||||
pos += written;
|
||||
if (pos > inode->i_size) {
|
||||
i_size_write(inode, pos);
|
||||
mark_inode_dirty(inode);
|
||||
}
|
||||
inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
|
||||
di->i_size = cpu_to_le64((u64)i_size_read(inode));
|
||||
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
||||
di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
|
||||
di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
|
||||
|
||||
ret = ocfs2_journal_dirty(handle, di_bh);
|
||||
if (ret)
|
||||
mlog_errno(ret);
|
||||
|
||||
out_commit:
|
||||
ocfs2_commit_trans(osb, handle);
|
||||
|
||||
out_data:
|
||||
ocfs2_data_unlock(inode, 1);
|
||||
|
||||
out_meta:
|
||||
up_write(&OCFS2_I(inode)->ip_alloc_sem);
|
||||
ocfs2_meta_unlock(inode, 1);
|
||||
|
||||
out:
|
||||
brelse(di_bh);
|
||||
if (data_ac)
|
||||
ocfs2_free_alloc_context(data_ac);
|
||||
if (meta_ac)
|
||||
ocfs2_free_alloc_context(meta_ac);
|
||||
|
||||
return written ? written : ret;
|
||||
}
|
||||
|
||||
const struct address_space_operations ocfs2_aops = {
|
||||
.readpage = ocfs2_readpage,
|
||||
.writepage = ocfs2_writepage,
|
||||
|
Reference in New Issue
Block a user