NTFS: The big ntfs write(2) rewrite has arrived. We now implement our own

file operations ->write(), ->aio_write(), and ->writev() for regular
      files.  This replaces the old use of generic_file_write(), et al and
      the address space operations ->prepare_write and ->commit_write.
      This means that both sparse and non-sparse (unencrypted and
      uncompressed) files can now be extended using the normal write(2)
      code path.  There are two limitations at present and these are that
      we never create sparse files and that we only have limited support
      for highly fragmented files, i.e. ones whose data attribute is split
      across multiple extents.   When such a case is encountered,
      EOPNOTSUPP is returned.

Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
This commit is contained in:
Anton Altaparmakov
2005-10-11 15:40:40 +01:00
parent 29f5f3c141
commit 98b270362b
4 changed files with 2280 additions and 49 deletions

View File

@@ -50,9 +50,14 @@ userspace utilities, etc.
Features
========
- This is a complete rewrite of the NTFS driver that used to be in the kernel.
This new driver implements NTFS read support and is functionally equivalent
to the old ntfs driver.
- This is a complete rewrite of the NTFS driver that used to be in the 2.4 and
earlier kernels. This new driver implements NTFS read support and is
functionally equivalent to the old ntfs driver and it also implements limited
write support. The biggest limitation at present is that files/directories
cannot be created or deleted. See below for the list of write features that
are so far supported. Another limitation is that writing to compressed files
is not implemented at all. Also, neither read nor write access to encrypted
files is so far implemented.
- The new driver has full support for sparse files on NTFS 3.x volumes which
the old driver isn't happy with.
- The new driver supports execution of binaries due to mmap() now being
@@ -78,7 +83,20 @@ Features
- The new driver supports fsync(2), fdatasync(2), and msync(2).
- The new driver supports readv(2) and writev(2).
- The new driver supports access time updates (including mtime and ctime).
- The new driver supports truncate(2) and open(2) with O_TRUNC. But at present
only very limited support for highly fragmented files, i.e. ones which have
their data attribute split across multiple extents, is included. Another
limitation is that at present truncate(2) will never create sparse files,
since to mark a file sparse we need to modify the directory entry for the
file and we do not implement directory modifications yet.
- The new driver supports write(2) which can both overwrite existing data and
extend the file size so that you can write beyond the existing data. Also,
writing into sparse regions is supported and the holes are filled in with
clusters. But at present only limited support for highly fragmented files,
i.e. ones which have their data attribute split across multiple extents, is
included. Another limitation is that write(2) will never create sparse
files, since to mark a file sparse we need to modify the directory entry for
the file and we do not implement directory modifications yet.
Supported mount options
=======================
@@ -439,6 +457,22 @@ ChangeLog
Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
2.1.25:
- Write support is now extended with write(2) being able to both
overwrite existing file data and to extend files. Also, if a write
to a sparse region occurs, write(2) will fill in the hole. Note,
mmap(2) based writes still do not support writing into holes or
writing beyond the initialized size.
- Write support has a new feature and that is that truncate(2) and
open(2) with O_TRUNC are now implemented thus files can be both made
smaller and larger.
- Note: Both write(2) and truncate(2)/open(2) with O_TRUNC still have
limitations in that they
- only provide limited support for highly fragmented files.
- only work on regular, i.e. uncompressed and unencrypted files.
- never create sparse files although this will change once directory
operations are implemented.
- Lots of bug fixes and enhancements across the board.
2.1.24:
- Support journals ($LogFile) which have been modified by chkdsk. This
means users can boot into Windows after we marked the volume dirty.