Merge branches 'aaci', 'mmci-dma', 'pl' and 'pl011' into drivers

This commit is contained in:
Russell King
2011-03-17 11:04:51 +00:00
1461 changed files with 19579 additions and 10911 deletions

View File

@@ -2,7 +2,7 @@
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (C) 2010 ST-Ericsson AB.
* Copyright (C) 2010 ST-Ericsson SA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -14,6 +14,7 @@
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
@@ -24,8 +25,10 @@
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
#include <linux/amba/mmci.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/amba/mmci.h>
#include <asm/div64.h>
#include <asm/io.h>
@@ -46,10 +49,6 @@ static unsigned int fmax = 515633;
* is asserted (likewise for RX)
* @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
* is asserted (likewise for RX)
* @broken_blockend: the MCI_DATABLOCKEND is broken on the hardware
* and will not work at all.
* @broken_blockend_dma: the MCI_DATABLOCKEND is broken on the hardware when
* using DMA.
* @sdio: variant supports SDIO
* @st_clkdiv: true if using a ST-specific clock divider algorithm
*/
@@ -59,8 +58,6 @@ struct variant_data {
unsigned int datalength_bits;
unsigned int fifosize;
unsigned int fifohalfsize;
bool broken_blockend;
bool broken_blockend_dma;
bool sdio;
bool st_clkdiv;
};
@@ -76,7 +73,6 @@ static struct variant_data variant_u300 = {
.fifohalfsize = 8 * 4,
.clkreg_enable = 1 << 13, /* HWFCEN */
.datalength_bits = 16,
.broken_blockend_dma = true,
.sdio = true,
};
@@ -86,7 +82,6 @@ static struct variant_data variant_ux500 = {
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = 1 << 14, /* HWFCEN */
.datalength_bits = 24,
.broken_blockend = true,
.sdio = true,
.st_clkdiv = true,
};
@@ -149,9 +144,6 @@ mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
host->mrq = NULL;
host->cmd = NULL;
if (mrq->data)
mrq->data->bytes_xfered = host->data_xfered;
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
@@ -196,6 +188,248 @@ static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
}
/*
* All the DMA operation mode stuff goes inside this ifdef.
* This assumes that you have a generic DMA device interface,
* no custom DMA interfaces are supported.
*/
#ifdef CONFIG_DMA_ENGINE
static void __devinit mmci_dma_setup(struct mmci_host *host)
{
struct mmci_platform_data *plat = host->plat;
const char *rxname, *txname;
dma_cap_mask_t mask;
if (!plat || !plat->dma_filter) {
dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
return;
}
/* Try to acquire a generic DMA engine slave channel */
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/*
* If only an RX channel is specified, the driver will
* attempt to use it bidirectionally, however if it is
* is specified but cannot be located, DMA will be disabled.
*/
if (plat->dma_rx_param) {
host->dma_rx_channel = dma_request_channel(mask,
plat->dma_filter,
plat->dma_rx_param);
/* E.g if no DMA hardware is present */
if (!host->dma_rx_channel)
dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
}
if (plat->dma_tx_param) {
host->dma_tx_channel = dma_request_channel(mask,
plat->dma_filter,
plat->dma_tx_param);
if (!host->dma_tx_channel)
dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
} else {
host->dma_tx_channel = host->dma_rx_channel;
}
if (host->dma_rx_channel)
rxname = dma_chan_name(host->dma_rx_channel);
else
rxname = "none";
if (host->dma_tx_channel)
txname = dma_chan_name(host->dma_tx_channel);
else
txname = "none";
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
rxname, txname);
/*
* Limit the maximum segment size in any SG entry according to
* the parameters of the DMA engine device.
*/
if (host->dma_tx_channel) {
struct device *dev = host->dma_tx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (host->dma_rx_channel) {
struct device *dev = host->dma_rx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
}
/*
* This is used in __devinit or __devexit so inline it
* so it can be discarded.
*/
static inline void mmci_dma_release(struct mmci_host *host)
{
struct mmci_platform_data *plat = host->plat;
if (host->dma_rx_channel)
dma_release_channel(host->dma_rx_channel);
if (host->dma_tx_channel && plat->dma_tx_param)
dma_release_channel(host->dma_tx_channel);
host->dma_rx_channel = host->dma_tx_channel = NULL;
}
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
{
struct dma_chan *chan = host->dma_current;
enum dma_data_direction dir;
u32 status;
int i;
/* Wait up to 1ms for the DMA to complete */
for (i = 0; ; i++) {
status = readl(host->base + MMCISTATUS);
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
break;
udelay(10);
}
/*
* Check to see whether we still have some data left in the FIFO -
* this catches DMA controllers which are unable to monitor the
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
* contiguous buffers. On TX, we'll get a FIFO underrun error.
*/
if (status & MCI_RXDATAAVLBLMASK) {
dmaengine_terminate_all(chan);
if (!data->error)
data->error = -EIO;
}
if (data->flags & MMC_DATA_WRITE) {
dir = DMA_TO_DEVICE;
} else {
dir = DMA_FROM_DEVICE;
}
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
/*
* Use of DMA with scatter-gather is impossible.
* Give up with DMA and switch back to PIO mode.
*/
if (status & MCI_RXDATAAVLBLMASK) {
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
mmci_dma_release(host);
}
}
static void mmci_dma_data_error(struct mmci_host *host)
{
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
dmaengine_terminate_all(host->dma_current);
}
static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
{
struct variant_data *variant = host->variant;
struct dma_slave_config conf = {
.src_addr = host->phybase + MMCIFIFO,
.dst_addr = host->phybase + MMCIFIFO,
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
};
struct mmc_data *data = host->data;
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *desc;
int nr_sg;
host->dma_current = NULL;
if (data->flags & MMC_DATA_READ) {
conf.direction = DMA_FROM_DEVICE;
chan = host->dma_rx_channel;
} else {
conf.direction = DMA_TO_DEVICE;
chan = host->dma_tx_channel;
}
/* If there's no DMA channel, fall back to PIO */
if (!chan)
return -EINVAL;
/* If less than or equal to the fifo size, don't bother with DMA */
if (host->size <= variant->fifosize)
return -EINVAL;
device = chan->device;
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
if (nr_sg == 0)
return -EINVAL;
dmaengine_slave_config(chan, &conf);
desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
conf.direction, DMA_CTRL_ACK);
if (!desc)
goto unmap_exit;
/* Okay, go for it. */
host->dma_current = chan;
dev_vdbg(mmc_dev(host->mmc),
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
data->sg_len, data->blksz, data->blocks, data->flags);
dmaengine_submit(desc);
dma_async_issue_pending(chan);
datactrl |= MCI_DPSM_DMAENABLE;
/* Trigger the DMA transfer */
writel(datactrl, host->base + MMCIDATACTRL);
/*
* Let the MMCI say when the data is ended and it's time
* to fire next DMA request. When that happens, MMCI will
* call mmci_data_end()
*/
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
host->base + MMCIMASK0);
return 0;
unmap_exit:
dmaengine_terminate_all(chan);
dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
return -ENOMEM;
}
#else
/* Blank functions if the DMA engine is not available */
static inline void mmci_dma_setup(struct mmci_host *host)
{
}
static inline void mmci_dma_release(struct mmci_host *host)
{
}
static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
{
}
static inline void mmci_dma_data_error(struct mmci_host *host)
{
}
static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
{
return -ENOSYS;
}
#endif
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
struct variant_data *variant = host->variant;
@@ -209,11 +443,7 @@ static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
host->data = data;
host->size = data->blksz * data->blocks;
host->data_xfered = 0;
host->blockend = false;
host->dataend = false;
mmci_init_sg(host, data);
data->bytes_xfered = 0;
clks = (unsigned long long)data->timeout_ns * host->cclk;
do_div(clks, 1000000000UL);
@@ -228,15 +458,29 @@ static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
BUG_ON(1 << blksz_bits != data->blksz);
datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
if (data->flags & MMC_DATA_READ) {
if (data->flags & MMC_DATA_READ)
datactrl |= MCI_DPSM_DIRECTION;
/*
* Attempt to use DMA operation mode, if this
* should fail, fall back to PIO mode
*/
if (!mmci_dma_start_data(host, datactrl))
return;
/* IRQ mode, map the SG list for CPU reading/writing */
mmci_init_sg(host, data);
if (data->flags & MMC_DATA_READ) {
irqmask = MCI_RXFIFOHALFFULLMASK;
/*
* If we have less than a FIFOSIZE of bytes to transfer,
* trigger a PIO interrupt as soon as any data is available.
* If we have less than the fifo 'half-full' threshold to
* transfer, trigger a PIO interrupt as soon as any data
* is available.
*/
if (host->size < variant->fifosize)
if (host->size < variant->fifohalfsize)
irqmask |= MCI_RXDATAAVLBLMASK;
} else {
/*
@@ -288,95 +532,55 @@ static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
struct variant_data *variant = host->variant;
/* First check for errors */
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ (status %08x)\n", status);
if (status & MCI_DATACRCFAIL)
u32 remain, success;
/* Terminate the DMA transfer */
if (dma_inprogress(host))
mmci_dma_data_error(host);
/*
* Calculate how far we are into the transfer. Note that
* the data counter gives the number of bytes transferred
* on the MMC bus, not on the host side. On reads, this
* can be as much as a FIFO-worth of data ahead. This
* matters for FIFO overruns only.
*/
remain = readl(host->base + MMCIDATACNT);
success = data->blksz * data->blocks - remain;
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
status, success);
if (status & MCI_DATACRCFAIL) {
/* Last block was not successful */
success -= 1;
data->error = -EILSEQ;
else if (status & MCI_DATATIMEOUT)
} else if (status & MCI_DATATIMEOUT) {
data->error = -ETIMEDOUT;
else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN))
} else if (status & MCI_TXUNDERRUN) {
data->error = -EIO;
} else if (status & MCI_RXOVERRUN) {
if (success > host->variant->fifosize)
success -= host->variant->fifosize;
else
success = 0;
data->error = -EIO;
/* Force-complete the transaction */
host->blockend = true;
host->dataend = true;
/*
* We hit an error condition. Ensure that any data
* partially written to a page is properly coherent.
*/
if (data->flags & MMC_DATA_READ) {
struct sg_mapping_iter *sg_miter = &host->sg_miter;
unsigned long flags;
local_irq_save(flags);
if (sg_miter_next(sg_miter)) {
flush_dcache_page(sg_miter->page);
sg_miter_stop(sg_miter);
}
local_irq_restore(flags);
}
data->bytes_xfered = round_down(success, data->blksz);
}
/*
* On ARM variants in PIO mode, MCI_DATABLOCKEND
* is always sent first, and we increase the
* transfered number of bytes for that IRQ. Then
* MCI_DATAEND follows and we conclude the transaction.
*
* On the Ux500 single-IRQ variant MCI_DATABLOCKEND
* doesn't seem to immediately clear from the status,
* so we can't use it keep count when only one irq is
* used because the irq will hit for other reasons, and
* then the flag is still up. So we use the MCI_DATAEND
* IRQ at the end of the entire transfer because
* MCI_DATABLOCKEND is broken.
*
* In the U300, the IRQs can arrive out-of-order,
* e.g. MCI_DATABLOCKEND sometimes arrives after MCI_DATAEND,
* so for this case we use the flags "blockend" and
* "dataend" to make sure both IRQs have arrived before
* concluding the transaction. (This does not apply
* to the Ux500 which doesn't fire MCI_DATABLOCKEND
* at all.) In DMA mode it suffers from the same problem
* as the Ux500.
*/
if (status & MCI_DATABLOCKEND) {
/*
* Just being a little over-cautious, we do not
* use this progressive update if the hardware blockend
* flag is unreliable: since it can stay high between
* IRQs it will corrupt the transfer counter.
*/
if (!variant->broken_blockend)
host->data_xfered += data->blksz;
host->blockend = true;
}
if (status & MCI_DATABLOCKEND)
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
if (status & MCI_DATAEND)
host->dataend = true;
/*
* On variants with broken blockend we shall only wait for dataend,
* on others we must sync with the blockend signal since they can
* appear out-of-order.
*/
if (host->dataend && (host->blockend || variant->broken_blockend)) {
if (status & MCI_DATAEND || data->error) {
if (dma_inprogress(host))
mmci_dma_unmap(host, data);
mmci_stop_data(host);
/* Reset these flags */
host->blockend = false;
host->dataend = false;
/*
* Variants with broken blockend flags need to handle the
* end of the entire transfer here.
*/
if (variant->broken_blockend && !data->error)
host->data_xfered += data->blksz * data->blocks;
if (!data->error)
/* The error clause is handled above, success! */
data->bytes_xfered = data->blksz * data->blocks;
if (!data->stop) {
mmci_request_end(host, data->mrq);
@@ -394,15 +598,15 @@ mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
host->cmd = NULL;
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
if (status & MCI_CMDTIMEOUT) {
cmd->error = -ETIMEDOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = -EILSEQ;
} else {
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
}
if (!cmd->data || cmd->error) {
@@ -549,9 +753,6 @@ static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
if (remain)
break;
if (status & MCI_RXACTIVE)
flush_dcache_page(sg_miter->page);
status = readl(base + MMCISTATUS);
} while (1);
@@ -560,10 +761,10 @@ static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
local_irq_restore(flags);
/*
* If we're nearing the end of the read, switch to
* "any data available" mode.
* If we have less than the fifo 'half-full' threshold to transfer,
* trigger a PIO interrupt as soon as any data is available.
*/
if (status & MCI_RXACTIVE && host->size < variant->fifosize)
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
/*
@@ -764,13 +965,13 @@ static const struct mmc_host_ops mmci_ops = {
.get_cd = mmci_get_cd,
};
static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
static int __devinit mmci_probe(struct amba_device *dev,
const struct amba_id *id)
{
struct mmci_platform_data *plat = dev->dev.platform_data;
struct variant_data *variant = id->data;
struct mmci_host *host;
struct mmc_host *mmc;
unsigned int mask;
int ret;
/* must have platform data */
@@ -828,6 +1029,7 @@ static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
host->mclk);
}
host->phybase = dev->res.start;
host->base = ioremap(dev->res.start, resource_size(&dev->res));
if (!host->base) {
ret = -ENOMEM;
@@ -951,18 +1153,16 @@ static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
goto irq0_free;
}
mask = MCI_IRQENABLE;
/* Don't use the datablockend flag if it's broken */
if (variant->broken_blockend)
mask &= ~MCI_DATABLOCKEND;
writel(mask, host->base + MMCIMASK0);
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
dev_info(&dev->dev, "%s: PL%03x rev%u at 0x%08llx irq %d,%d\n",
mmc_hostname(mmc), amba_part(dev), amba_rev(dev),
(unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]);
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
amba_rev(dev), (unsigned long long)dev->res.start,
dev->irq[0], dev->irq[1]);
mmci_dma_setup(host);
mmc_add_host(mmc);
@@ -1009,6 +1209,7 @@ static int __devexit mmci_remove(struct amba_device *dev)
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
mmci_dma_release(host);
free_irq(dev->irq[0], host);
if (!host->singleirq)
free_irq(dev->irq[1], host);