[PATCH] page migration reorg
Centralize the page migration functions in anticipation of additional tinkering. Creates a new file mm/migrate.c 1. Extract buffer_migrate_page() from fs/buffer.c 2. Extract central migration code from vmscan.c 3. Extract some components from mempolicy.c 4. Export pageout() and remove_from_swap() from vmscan.c 5. Make it possible to configure NUMA systems without page migration and non-NUMA systems with page migration. I had to so some #ifdeffing in mempolicy.c that may need a cleanup. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
committed by
Linus Torvalds
parent
442295c94b
commit
b20a35035f
491
mm/vmscan.c
491
mm/vmscan.c
@@ -42,18 +42,6 @@
|
||||
|
||||
#include "internal.h"
|
||||
|
||||
/* possible outcome of pageout() */
|
||||
typedef enum {
|
||||
/* failed to write page out, page is locked */
|
||||
PAGE_KEEP,
|
||||
/* move page to the active list, page is locked */
|
||||
PAGE_ACTIVATE,
|
||||
/* page has been sent to the disk successfully, page is unlocked */
|
||||
PAGE_SUCCESS,
|
||||
/* page is clean and locked */
|
||||
PAGE_CLEAN,
|
||||
} pageout_t;
|
||||
|
||||
struct scan_control {
|
||||
/* Incremented by the number of inactive pages that were scanned */
|
||||
unsigned long nr_scanned;
|
||||
@@ -304,7 +292,7 @@ static void handle_write_error(struct address_space *mapping,
|
||||
* pageout is called by shrink_page_list() for each dirty page.
|
||||
* Calls ->writepage().
|
||||
*/
|
||||
static pageout_t pageout(struct page *page, struct address_space *mapping)
|
||||
pageout_t pageout(struct page *page, struct address_space *mapping)
|
||||
{
|
||||
/*
|
||||
* If the page is dirty, only perform writeback if that write
|
||||
@@ -372,7 +360,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
|
||||
return PAGE_CLEAN;
|
||||
}
|
||||
|
||||
static int remove_mapping(struct address_space *mapping, struct page *page)
|
||||
int remove_mapping(struct address_space *mapping, struct page *page)
|
||||
{
|
||||
if (!mapping)
|
||||
return 0; /* truncate got there first */
|
||||
@@ -570,481 +558,6 @@ keep:
|
||||
return nr_reclaimed;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MIGRATION
|
||||
static inline void move_to_lru(struct page *page)
|
||||
{
|
||||
list_del(&page->lru);
|
||||
if (PageActive(page)) {
|
||||
/*
|
||||
* lru_cache_add_active checks that
|
||||
* the PG_active bit is off.
|
||||
*/
|
||||
ClearPageActive(page);
|
||||
lru_cache_add_active(page);
|
||||
} else {
|
||||
lru_cache_add(page);
|
||||
}
|
||||
put_page(page);
|
||||
}
|
||||
|
||||
/*
|
||||
* Add isolated pages on the list back to the LRU.
|
||||
*
|
||||
* returns the number of pages put back.
|
||||
*/
|
||||
unsigned long putback_lru_pages(struct list_head *l)
|
||||
{
|
||||
struct page *page;
|
||||
struct page *page2;
|
||||
unsigned long count = 0;
|
||||
|
||||
list_for_each_entry_safe(page, page2, l, lru) {
|
||||
move_to_lru(page);
|
||||
count++;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/*
|
||||
* Non migratable page
|
||||
*/
|
||||
int fail_migrate_page(struct page *newpage, struct page *page)
|
||||
{
|
||||
return -EIO;
|
||||
}
|
||||
EXPORT_SYMBOL(fail_migrate_page);
|
||||
|
||||
/*
|
||||
* swapout a single page
|
||||
* page is locked upon entry, unlocked on exit
|
||||
*/
|
||||
static int swap_page(struct page *page)
|
||||
{
|
||||
struct address_space *mapping = page_mapping(page);
|
||||
|
||||
if (page_mapped(page) && mapping)
|
||||
if (try_to_unmap(page, 1) != SWAP_SUCCESS)
|
||||
goto unlock_retry;
|
||||
|
||||
if (PageDirty(page)) {
|
||||
/* Page is dirty, try to write it out here */
|
||||
switch(pageout(page, mapping)) {
|
||||
case PAGE_KEEP:
|
||||
case PAGE_ACTIVATE:
|
||||
goto unlock_retry;
|
||||
|
||||
case PAGE_SUCCESS:
|
||||
goto retry;
|
||||
|
||||
case PAGE_CLEAN:
|
||||
; /* try to free the page below */
|
||||
}
|
||||
}
|
||||
|
||||
if (PagePrivate(page)) {
|
||||
if (!try_to_release_page(page, GFP_KERNEL) ||
|
||||
(!mapping && page_count(page) == 1))
|
||||
goto unlock_retry;
|
||||
}
|
||||
|
||||
if (remove_mapping(mapping, page)) {
|
||||
/* Success */
|
||||
unlock_page(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
unlock_retry:
|
||||
unlock_page(page);
|
||||
|
||||
retry:
|
||||
return -EAGAIN;
|
||||
}
|
||||
EXPORT_SYMBOL(swap_page);
|
||||
|
||||
/*
|
||||
* Page migration was first developed in the context of the memory hotplug
|
||||
* project. The main authors of the migration code are:
|
||||
*
|
||||
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
||||
* Hirokazu Takahashi <taka@valinux.co.jp>
|
||||
* Dave Hansen <haveblue@us.ibm.com>
|
||||
* Christoph Lameter <clameter@sgi.com>
|
||||
*/
|
||||
|
||||
/*
|
||||
* Remove references for a page and establish the new page with the correct
|
||||
* basic settings to be able to stop accesses to the page.
|
||||
*/
|
||||
int migrate_page_remove_references(struct page *newpage,
|
||||
struct page *page, int nr_refs)
|
||||
{
|
||||
struct address_space *mapping = page_mapping(page);
|
||||
struct page **radix_pointer;
|
||||
|
||||
/*
|
||||
* Avoid doing any of the following work if the page count
|
||||
* indicates that the page is in use or truncate has removed
|
||||
* the page.
|
||||
*/
|
||||
if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
|
||||
return -EAGAIN;
|
||||
|
||||
/*
|
||||
* Establish swap ptes for anonymous pages or destroy pte
|
||||
* maps for files.
|
||||
*
|
||||
* In order to reestablish file backed mappings the fault handlers
|
||||
* will take the radix tree_lock which may then be used to stop
|
||||
* processses from accessing this page until the new page is ready.
|
||||
*
|
||||
* A process accessing via a swap pte (an anonymous page) will take a
|
||||
* page_lock on the old page which will block the process until the
|
||||
* migration attempt is complete. At that time the PageSwapCache bit
|
||||
* will be examined. If the page was migrated then the PageSwapCache
|
||||
* bit will be clear and the operation to retrieve the page will be
|
||||
* retried which will find the new page in the radix tree. Then a new
|
||||
* direct mapping may be generated based on the radix tree contents.
|
||||
*
|
||||
* If the page was not migrated then the PageSwapCache bit
|
||||
* is still set and the operation may continue.
|
||||
*/
|
||||
if (try_to_unmap(page, 1) == SWAP_FAIL)
|
||||
/* A vma has VM_LOCKED set -> Permanent failure */
|
||||
return -EPERM;
|
||||
|
||||
/*
|
||||
* Give up if we were unable to remove all mappings.
|
||||
*/
|
||||
if (page_mapcount(page))
|
||||
return -EAGAIN;
|
||||
|
||||
write_lock_irq(&mapping->tree_lock);
|
||||
|
||||
radix_pointer = (struct page **)radix_tree_lookup_slot(
|
||||
&mapping->page_tree,
|
||||
page_index(page));
|
||||
|
||||
if (!page_mapping(page) || page_count(page) != nr_refs ||
|
||||
*radix_pointer != page) {
|
||||
write_unlock_irq(&mapping->tree_lock);
|
||||
return -EAGAIN;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we know that no one else is looking at the page.
|
||||
*
|
||||
* Certain minimal information about a page must be available
|
||||
* in order for other subsystems to properly handle the page if they
|
||||
* find it through the radix tree update before we are finished
|
||||
* copying the page.
|
||||
*/
|
||||
get_page(newpage);
|
||||
newpage->index = page->index;
|
||||
newpage->mapping = page->mapping;
|
||||
if (PageSwapCache(page)) {
|
||||
SetPageSwapCache(newpage);
|
||||
set_page_private(newpage, page_private(page));
|
||||
}
|
||||
|
||||
*radix_pointer = newpage;
|
||||
__put_page(page);
|
||||
write_unlock_irq(&mapping->tree_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(migrate_page_remove_references);
|
||||
|
||||
/*
|
||||
* Copy the page to its new location
|
||||
*/
|
||||
void migrate_page_copy(struct page *newpage, struct page *page)
|
||||
{
|
||||
copy_highpage(newpage, page);
|
||||
|
||||
if (PageError(page))
|
||||
SetPageError(newpage);
|
||||
if (PageReferenced(page))
|
||||
SetPageReferenced(newpage);
|
||||
if (PageUptodate(page))
|
||||
SetPageUptodate(newpage);
|
||||
if (PageActive(page))
|
||||
SetPageActive(newpage);
|
||||
if (PageChecked(page))
|
||||
SetPageChecked(newpage);
|
||||
if (PageMappedToDisk(page))
|
||||
SetPageMappedToDisk(newpage);
|
||||
|
||||
if (PageDirty(page)) {
|
||||
clear_page_dirty_for_io(page);
|
||||
set_page_dirty(newpage);
|
||||
}
|
||||
|
||||
ClearPageSwapCache(page);
|
||||
ClearPageActive(page);
|
||||
ClearPagePrivate(page);
|
||||
set_page_private(page, 0);
|
||||
page->mapping = NULL;
|
||||
|
||||
/*
|
||||
* If any waiters have accumulated on the new page then
|
||||
* wake them up.
|
||||
*/
|
||||
if (PageWriteback(newpage))
|
||||
end_page_writeback(newpage);
|
||||
}
|
||||
EXPORT_SYMBOL(migrate_page_copy);
|
||||
|
||||
/*
|
||||
* Common logic to directly migrate a single page suitable for
|
||||
* pages that do not use PagePrivate.
|
||||
*
|
||||
* Pages are locked upon entry and exit.
|
||||
*/
|
||||
int migrate_page(struct page *newpage, struct page *page)
|
||||
{
|
||||
int rc;
|
||||
|
||||
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
|
||||
|
||||
rc = migrate_page_remove_references(newpage, page, 2);
|
||||
|
||||
if (rc)
|
||||
return rc;
|
||||
|
||||
migrate_page_copy(newpage, page);
|
||||
|
||||
/*
|
||||
* Remove auxiliary swap entries and replace
|
||||
* them with real ptes.
|
||||
*
|
||||
* Note that a real pte entry will allow processes that are not
|
||||
* waiting on the page lock to use the new page via the page tables
|
||||
* before the new page is unlocked.
|
||||
*/
|
||||
remove_from_swap(newpage);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(migrate_page);
|
||||
|
||||
/*
|
||||
* migrate_pages
|
||||
*
|
||||
* Two lists are passed to this function. The first list
|
||||
* contains the pages isolated from the LRU to be migrated.
|
||||
* The second list contains new pages that the pages isolated
|
||||
* can be moved to. If the second list is NULL then all
|
||||
* pages are swapped out.
|
||||
*
|
||||
* The function returns after 10 attempts or if no pages
|
||||
* are movable anymore because to has become empty
|
||||
* or no retryable pages exist anymore.
|
||||
*
|
||||
* Return: Number of pages not migrated when "to" ran empty.
|
||||
*/
|
||||
unsigned long migrate_pages(struct list_head *from, struct list_head *to,
|
||||
struct list_head *moved, struct list_head *failed)
|
||||
{
|
||||
unsigned long retry;
|
||||
unsigned long nr_failed = 0;
|
||||
int pass = 0;
|
||||
struct page *page;
|
||||
struct page *page2;
|
||||
int swapwrite = current->flags & PF_SWAPWRITE;
|
||||
int rc;
|
||||
|
||||
if (!swapwrite)
|
||||
current->flags |= PF_SWAPWRITE;
|
||||
|
||||
redo:
|
||||
retry = 0;
|
||||
|
||||
list_for_each_entry_safe(page, page2, from, lru) {
|
||||
struct page *newpage = NULL;
|
||||
struct address_space *mapping;
|
||||
|
||||
cond_resched();
|
||||
|
||||
rc = 0;
|
||||
if (page_count(page) == 1)
|
||||
/* page was freed from under us. So we are done. */
|
||||
goto next;
|
||||
|
||||
if (to && list_empty(to))
|
||||
break;
|
||||
|
||||
/*
|
||||
* Skip locked pages during the first two passes to give the
|
||||
* functions holding the lock time to release the page. Later we
|
||||
* use lock_page() to have a higher chance of acquiring the
|
||||
* lock.
|
||||
*/
|
||||
rc = -EAGAIN;
|
||||
if (pass > 2)
|
||||
lock_page(page);
|
||||
else
|
||||
if (TestSetPageLocked(page))
|
||||
goto next;
|
||||
|
||||
/*
|
||||
* Only wait on writeback if we have already done a pass where
|
||||
* we we may have triggered writeouts for lots of pages.
|
||||
*/
|
||||
if (pass > 0) {
|
||||
wait_on_page_writeback(page);
|
||||
} else {
|
||||
if (PageWriteback(page))
|
||||
goto unlock_page;
|
||||
}
|
||||
|
||||
/*
|
||||
* Anonymous pages must have swap cache references otherwise
|
||||
* the information contained in the page maps cannot be
|
||||
* preserved.
|
||||
*/
|
||||
if (PageAnon(page) && !PageSwapCache(page)) {
|
||||
if (!add_to_swap(page, GFP_KERNEL)) {
|
||||
rc = -ENOMEM;
|
||||
goto unlock_page;
|
||||
}
|
||||
}
|
||||
|
||||
if (!to) {
|
||||
rc = swap_page(page);
|
||||
goto next;
|
||||
}
|
||||
|
||||
newpage = lru_to_page(to);
|
||||
lock_page(newpage);
|
||||
|
||||
/*
|
||||
* Pages are properly locked and writeback is complete.
|
||||
* Try to migrate the page.
|
||||
*/
|
||||
mapping = page_mapping(page);
|
||||
if (!mapping)
|
||||
goto unlock_both;
|
||||
|
||||
if (mapping->a_ops->migratepage) {
|
||||
/*
|
||||
* Most pages have a mapping and most filesystems
|
||||
* should provide a migration function. Anonymous
|
||||
* pages are part of swap space which also has its
|
||||
* own migration function. This is the most common
|
||||
* path for page migration.
|
||||
*/
|
||||
rc = mapping->a_ops->migratepage(newpage, page);
|
||||
goto unlock_both;
|
||||
}
|
||||
|
||||
/*
|
||||
* Default handling if a filesystem does not provide
|
||||
* a migration function. We can only migrate clean
|
||||
* pages so try to write out any dirty pages first.
|
||||
*/
|
||||
if (PageDirty(page)) {
|
||||
switch (pageout(page, mapping)) {
|
||||
case PAGE_KEEP:
|
||||
case PAGE_ACTIVATE:
|
||||
goto unlock_both;
|
||||
|
||||
case PAGE_SUCCESS:
|
||||
unlock_page(newpage);
|
||||
goto next;
|
||||
|
||||
case PAGE_CLEAN:
|
||||
; /* try to migrate the page below */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Buffers are managed in a filesystem specific way.
|
||||
* We must have no buffers or drop them.
|
||||
*/
|
||||
if (!page_has_buffers(page) ||
|
||||
try_to_release_page(page, GFP_KERNEL)) {
|
||||
rc = migrate_page(newpage, page);
|
||||
goto unlock_both;
|
||||
}
|
||||
|
||||
/*
|
||||
* On early passes with mapped pages simply
|
||||
* retry. There may be a lock held for some
|
||||
* buffers that may go away. Later
|
||||
* swap them out.
|
||||
*/
|
||||
if (pass > 4) {
|
||||
/*
|
||||
* Persistently unable to drop buffers..... As a
|
||||
* measure of last resort we fall back to
|
||||
* swap_page().
|
||||
*/
|
||||
unlock_page(newpage);
|
||||
newpage = NULL;
|
||||
rc = swap_page(page);
|
||||
goto next;
|
||||
}
|
||||
|
||||
unlock_both:
|
||||
unlock_page(newpage);
|
||||
|
||||
unlock_page:
|
||||
unlock_page(page);
|
||||
|
||||
next:
|
||||
if (rc == -EAGAIN) {
|
||||
retry++;
|
||||
} else if (rc) {
|
||||
/* Permanent failure */
|
||||
list_move(&page->lru, failed);
|
||||
nr_failed++;
|
||||
} else {
|
||||
if (newpage) {
|
||||
/* Successful migration. Return page to LRU */
|
||||
move_to_lru(newpage);
|
||||
}
|
||||
list_move(&page->lru, moved);
|
||||
}
|
||||
}
|
||||
if (retry && pass++ < 10)
|
||||
goto redo;
|
||||
|
||||
if (!swapwrite)
|
||||
current->flags &= ~PF_SWAPWRITE;
|
||||
|
||||
return nr_failed + retry;
|
||||
}
|
||||
|
||||
/*
|
||||
* Isolate one page from the LRU lists and put it on the
|
||||
* indicated list with elevated refcount.
|
||||
*
|
||||
* Result:
|
||||
* 0 = page not on LRU list
|
||||
* 1 = page removed from LRU list and added to the specified list.
|
||||
*/
|
||||
int isolate_lru_page(struct page *page)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if (PageLRU(page)) {
|
||||
struct zone *zone = page_zone(page);
|
||||
spin_lock_irq(&zone->lru_lock);
|
||||
if (PageLRU(page)) {
|
||||
ret = 1;
|
||||
get_page(page);
|
||||
ClearPageLRU(page);
|
||||
if (PageActive(page))
|
||||
del_page_from_active_list(zone, page);
|
||||
else
|
||||
del_page_from_inactive_list(zone, page);
|
||||
}
|
||||
spin_unlock_irq(&zone->lru_lock);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* zone->lru_lock is heavily contended. Some of the functions that
|
||||
* shrink the lists perform better by taking out a batch of pages
|
||||
|
Reference in New Issue
Block a user