Make hypercalls arch-independent.
Clean up the hypercall code to make the code in hypercalls.c architecture independent. First process the common hypercalls and then call lguest_arch_do_hcall() if the call hasn't been handled. Rename struct hcall_ring to hcall_args. This patch requires the previous patch which reorganize the layout of struct lguest_regs on i386 so they match the layout of struct hcall_args. Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
committed by
Rusty Russell
parent
cc6d4fbcef
commit
b410e7b149
@@ -25,17 +25,13 @@
|
||||
#include <linux/mm.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <irq_vectors.h>
|
||||
#include "lg.h"
|
||||
|
||||
/*H:120 This is the core hypercall routine: where the Guest gets what it
|
||||
* wants. Or gets killed. Or, in the case of LHCALL_CRASH, both.
|
||||
*
|
||||
* Remember from the Guest: %eax == which call to make, and the arguments are
|
||||
* packed into %edx, %ebx and %ecx if needed. */
|
||||
static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
||||
/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
|
||||
* Or gets killed. Or, in the case of LHCALL_CRASH, both. */
|
||||
static void do_hcall(struct lguest *lg, struct hcall_args *args)
|
||||
{
|
||||
switch (regs->eax) {
|
||||
switch (args->arg0) {
|
||||
case LHCALL_FLUSH_ASYNC:
|
||||
/* This call does nothing, except by breaking out of the Guest
|
||||
* it makes us process all the asynchronous hypercalls. */
|
||||
@@ -51,7 +47,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
||||
char msg[128];
|
||||
/* If the lgread fails, it will call kill_guest() itself; the
|
||||
* kill_guest() with the message will be ignored. */
|
||||
lgread(lg, msg, regs->edx, sizeof(msg));
|
||||
lgread(lg, msg, args->arg1, sizeof(msg));
|
||||
msg[sizeof(msg)-1] = '\0';
|
||||
kill_guest(lg, "CRASH: %s", msg);
|
||||
break;
|
||||
@@ -59,7 +55,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
||||
case LHCALL_FLUSH_TLB:
|
||||
/* FLUSH_TLB comes in two flavors, depending on the
|
||||
* argument: */
|
||||
if (regs->edx)
|
||||
if (args->arg1)
|
||||
guest_pagetable_clear_all(lg);
|
||||
else
|
||||
guest_pagetable_flush_user(lg);
|
||||
@@ -71,55 +67,47 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
||||
* it here. This can legitimately fail, since we currently
|
||||
* place a limit on the number of DMA pools a Guest can have.
|
||||
* So we return true or false from this call. */
|
||||
regs->eax = bind_dma(lg, regs->edx, regs->ebx,
|
||||
regs->ecx >> 8, regs->ecx & 0xFF);
|
||||
args->arg0 = bind_dma(lg, args->arg1, args->arg2,
|
||||
args->arg3 >> 8, args->arg3 & 0xFF);
|
||||
break;
|
||||
|
||||
/* All these calls simply pass the arguments through to the right
|
||||
* routines. */
|
||||
case LHCALL_SEND_DMA:
|
||||
send_dma(lg, regs->edx, regs->ebx);
|
||||
break;
|
||||
case LHCALL_LOAD_GDT:
|
||||
load_guest_gdt(lg, regs->edx, regs->ebx);
|
||||
break;
|
||||
case LHCALL_LOAD_IDT_ENTRY:
|
||||
load_guest_idt_entry(lg, regs->edx, regs->ebx, regs->ecx);
|
||||
send_dma(lg, args->arg1, args->arg2);
|
||||
break;
|
||||
case LHCALL_NEW_PGTABLE:
|
||||
guest_new_pagetable(lg, regs->edx);
|
||||
guest_new_pagetable(lg, args->arg1);
|
||||
break;
|
||||
case LHCALL_SET_STACK:
|
||||
guest_set_stack(lg, regs->edx, regs->ebx, regs->ecx);
|
||||
guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_SET_PTE:
|
||||
guest_set_pte(lg, regs->edx, regs->ebx, mkgpte(regs->ecx));
|
||||
guest_set_pte(lg, args->arg1, args->arg2, mkgpte(args->arg3));
|
||||
break;
|
||||
case LHCALL_SET_PMD:
|
||||
guest_set_pmd(lg, regs->edx, regs->ebx);
|
||||
break;
|
||||
case LHCALL_LOAD_TLS:
|
||||
guest_load_tls(lg, regs->edx);
|
||||
guest_set_pmd(lg, args->arg1, args->arg2);
|
||||
break;
|
||||
case LHCALL_SET_CLOCKEVENT:
|
||||
guest_set_clockevent(lg, regs->edx);
|
||||
guest_set_clockevent(lg, args->arg1);
|
||||
break;
|
||||
|
||||
case LHCALL_TS:
|
||||
/* This sets the TS flag, as we saw used in run_guest(). */
|
||||
lg->ts = regs->edx;
|
||||
lg->ts = args->arg1;
|
||||
break;
|
||||
case LHCALL_HALT:
|
||||
/* Similarly, this sets the halted flag for run_guest(). */
|
||||
lg->halted = 1;
|
||||
break;
|
||||
default:
|
||||
kill_guest(lg, "Bad hypercall %li\n", regs->eax);
|
||||
if (lguest_arch_do_hcall(lg, args))
|
||||
kill_guest(lg, "Bad hypercall %li\n", args->arg0);
|
||||
}
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Asynchronous hypercalls are easy: we just look in the array in the Guest's
|
||||
* "struct lguest_data" and see if there are any new ones marked "ready".
|
||||
/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
|
||||
* Guest's "struct lguest_data" to see if any new ones are marked "ready".
|
||||
*
|
||||
* We are careful to do these in order: obviously we respect the order the
|
||||
* Guest put them in the ring, but we also promise the Guest that they will
|
||||
@@ -134,10 +122,9 @@ static void do_async_hcalls(struct lguest *lg)
|
||||
if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
|
||||
return;
|
||||
|
||||
|
||||
/* We process "struct lguest_data"s hcalls[] ring once. */
|
||||
for (i = 0; i < ARRAY_SIZE(st); i++) {
|
||||
struct lguest_regs regs;
|
||||
struct hcall_args args;
|
||||
/* We remember where we were up to from last time. This makes
|
||||
* sure that the hypercalls are done in the order the Guest
|
||||
* places them in the ring. */
|
||||
@@ -152,18 +139,16 @@ static void do_async_hcalls(struct lguest *lg)
|
||||
if (++lg->next_hcall == LHCALL_RING_SIZE)
|
||||
lg->next_hcall = 0;
|
||||
|
||||
/* We copy the hypercall arguments into a fake register
|
||||
* structure. This makes life simple for do_hcall(). */
|
||||
if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax)
|
||||
|| get_user(regs.edx, &lg->lguest_data->hcalls[n].edx)
|
||||
|| get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx)
|
||||
|| get_user(regs.ebx, &lg->lguest_data->hcalls[n].ebx)) {
|
||||
/* Copy the hypercall arguments into a local copy of
|
||||
* the hcall_args struct. */
|
||||
if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
|
||||
sizeof(struct hcall_args))) {
|
||||
kill_guest(lg, "Fetching async hypercalls");
|
||||
break;
|
||||
}
|
||||
|
||||
/* Do the hypercall, same as a normal one. */
|
||||
do_hcall(lg, ®s);
|
||||
do_hcall(lg, &args);
|
||||
|
||||
/* Mark the hypercall done. */
|
||||
if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
|
||||
@@ -182,41 +167,16 @@ static void do_async_hcalls(struct lguest *lg)
|
||||
* Guest makes a hypercall, we end up here to set things up: */
|
||||
static void initialize(struct lguest *lg)
|
||||
{
|
||||
u32 tsc_speed;
|
||||
|
||||
/* You can't do anything until you're initialized. The Guest knows the
|
||||
* rules, so we're unforgiving here. */
|
||||
if (lg->regs->eax != LHCALL_LGUEST_INIT) {
|
||||
kill_guest(lg, "hypercall %li before LGUEST_INIT",
|
||||
lg->regs->eax);
|
||||
if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
|
||||
kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
|
||||
return;
|
||||
}
|
||||
|
||||
/* We insist that the Time Stamp Counter exist and doesn't change with
|
||||
* cpu frequency. Some devious chip manufacturers decided that TSC
|
||||
* changes could be handled in software. I decided that time going
|
||||
* backwards might be good for benchmarks, but it's bad for users.
|
||||
*
|
||||
* We also insist that the TSC be stable: the kernel detects unreliable
|
||||
* TSCs for its own purposes, and we use that here. */
|
||||
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
|
||||
tsc_speed = tsc_khz;
|
||||
else
|
||||
tsc_speed = 0;
|
||||
|
||||
/* The pointer to the Guest's "struct lguest_data" is the only
|
||||
* argument. We check that address now. */
|
||||
if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) {
|
||||
if (lguest_arch_init_hypercalls(lg))
|
||||
kill_guest(lg, "bad guest page %p", lg->lguest_data);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Having checked it, we simply set lg->lguest_data to point straight
|
||||
* into the Launcher's memory at the right place and then use
|
||||
* copy_to_user/from_user from now on, instead of lgread/write. I put
|
||||
* this in to show that I'm not immune to writing stupid
|
||||
* optimizations. */
|
||||
lg->lguest_data = lg->mem_base + lg->regs->edx;
|
||||
|
||||
/* The Guest tells us where we're not to deliver interrupts by putting
|
||||
* the range of addresses into "struct lguest_data". */
|
||||
@@ -224,8 +184,7 @@ static void initialize(struct lguest *lg)
|
||||
|| get_user(lg->noirq_end, &lg->lguest_data->noirq_end)
|
||||
/* We tell the Guest that it can't use the top 4MB of virtual
|
||||
* addresses used by the Switcher. */
|
||||
|| put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
|
||||
|| put_user(tsc_speed, &lg->lguest_data->tsc_khz))
|
||||
|| put_user(4U*1024*1024, &lg->lguest_data->reserve_mem))
|
||||
kill_guest(lg, "bad guest page %p", lg->lguest_data);
|
||||
|
||||
/* We write the current time into the Guest's data page once now. */
|
||||
@@ -237,9 +196,6 @@ static void initialize(struct lguest *lg)
|
||||
* page. */
|
||||
guest_pagetable_clear_all(lg);
|
||||
}
|
||||
/* Now we've examined the hypercall code; our Guest can make requests. There
|
||||
* is one other way we can do things for the Guest, as we see in
|
||||
* emulate_insn(). */
|
||||
|
||||
/*H:100
|
||||
* Hypercalls
|
||||
|
Reference in New Issue
Block a user