[POWERPC] QE: Add ability to upload QE firmware
Define the layout of a binary blob that contains a QE firmware and instructions on how to upload it. Add function qe_upload_firmware() to parse the blob and perform the actual upload. Fully define 'struct rsp' in immap_qe.h to include the actual RISC Special Registers. Added description of a new QE firmware node to booting-without-of.txt. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This commit is contained in:
@@ -28,3 +28,6 @@ sound.txt
|
|||||||
- info on sound support under Linux/PPC
|
- info on sound support under Linux/PPC
|
||||||
zImage_layout.txt
|
zImage_layout.txt
|
||||||
- info on the kernel images for Linux/PPC
|
- info on the kernel images for Linux/PPC
|
||||||
|
qe_firmware.txt
|
||||||
|
- describes the layout of firmware binaries for the Freescale QUICC
|
||||||
|
Engine and the code that parses and uploads the microcode therein.
|
||||||
|
@@ -52,7 +52,10 @@ Table of Contents
|
|||||||
i) Freescale QUICC Engine module (QE)
|
i) Freescale QUICC Engine module (QE)
|
||||||
j) CFI or JEDEC memory-mapped NOR flash
|
j) CFI or JEDEC memory-mapped NOR flash
|
||||||
k) Global Utilities Block
|
k) Global Utilities Block
|
||||||
l) Xilinx IP cores
|
l) Freescale Communications Processor Module
|
||||||
|
m) Chipselect/Local Bus
|
||||||
|
n) 4xx/Axon EMAC ethernet nodes
|
||||||
|
o) Xilinx IP cores
|
||||||
|
|
||||||
VII - Specifying interrupt information for devices
|
VII - Specifying interrupt information for devices
|
||||||
1) interrupts property
|
1) interrupts property
|
||||||
@@ -1788,6 +1791,32 @@ platforms are moved over to use the flattened-device-tree model.
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
viii) Uploaded QE firmware
|
||||||
|
|
||||||
|
If a new firwmare has been uploaded to the QE (usually by the
|
||||||
|
boot loader), then a 'firmware' child node should be added to the QE
|
||||||
|
node. This node provides information on the uploaded firmware that
|
||||||
|
device drivers may need.
|
||||||
|
|
||||||
|
Required properties:
|
||||||
|
- id: The string name of the firmware. This is taken from the 'id'
|
||||||
|
member of the qe_firmware structure of the uploaded firmware.
|
||||||
|
Device drivers can search this string to determine if the
|
||||||
|
firmware they want is already present.
|
||||||
|
- extended-modes: The Extended Modes bitfield, taken from the
|
||||||
|
firmware binary. It is a 64-bit number represented
|
||||||
|
as an array of two 32-bit numbers.
|
||||||
|
- virtual-traps: The virtual traps, taken from the firmware binary.
|
||||||
|
It is an array of 8 32-bit numbers.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
firmware {
|
||||||
|
id = "Soft-UART";
|
||||||
|
extended-modes = <0 0>;
|
||||||
|
virtual-traps = <0 0 0 0 0 0 0 0>;
|
||||||
|
}
|
||||||
|
|
||||||
j) CFI or JEDEC memory-mapped NOR flash
|
j) CFI or JEDEC memory-mapped NOR flash
|
||||||
|
|
||||||
Flash chips (Memory Technology Devices) are often used for solid state
|
Flash chips (Memory Technology Devices) are often used for solid state
|
||||||
@@ -2269,7 +2298,7 @@ platforms are moved over to use the flattened-device-tree model.
|
|||||||
available.
|
available.
|
||||||
For Axon: 0x0000012a
|
For Axon: 0x0000012a
|
||||||
|
|
||||||
l) Xilinx IP cores
|
o) Xilinx IP cores
|
||||||
|
|
||||||
The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
|
The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
|
||||||
in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range
|
in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range
|
||||||
|
295
Documentation/powerpc/qe_firmware.txt
Normal file
295
Documentation/powerpc/qe_firmware.txt
Normal file
@@ -0,0 +1,295 @@
|
|||||||
|
Freescale QUICC Engine Firmware Uploading
|
||||||
|
-----------------------------------------
|
||||||
|
|
||||||
|
(c) 2007 Timur Tabi <timur at freescale.com>,
|
||||||
|
Freescale Semiconductor
|
||||||
|
|
||||||
|
Table of Contents
|
||||||
|
=================
|
||||||
|
|
||||||
|
I - Software License for Firmware
|
||||||
|
|
||||||
|
II - Microcode Availability
|
||||||
|
|
||||||
|
III - Description and Terminology
|
||||||
|
|
||||||
|
IV - Microcode Programming Details
|
||||||
|
|
||||||
|
V - Firmware Structure Layout
|
||||||
|
|
||||||
|
VI - Sample Code for Creating Firmware Files
|
||||||
|
|
||||||
|
Revision Information
|
||||||
|
====================
|
||||||
|
|
||||||
|
November 30, 2007: Rev 1.0 - Initial version
|
||||||
|
|
||||||
|
I - Software License for Firmware
|
||||||
|
=================================
|
||||||
|
|
||||||
|
Each firmware file comes with its own software license. For information on
|
||||||
|
the particular license, please see the license text that is distributed with
|
||||||
|
the firmware.
|
||||||
|
|
||||||
|
II - Microcode Availability
|
||||||
|
===========================
|
||||||
|
|
||||||
|
Firmware files are distributed through various channels. Some are available on
|
||||||
|
http://opensource.freescale.com. For other firmware files, please contact
|
||||||
|
your Freescale representative or your operating system vendor.
|
||||||
|
|
||||||
|
III - Description and Terminology
|
||||||
|
================================
|
||||||
|
|
||||||
|
In this document, the term 'microcode' refers to the sequence of 32-bit
|
||||||
|
integers that compose the actual QE microcode.
|
||||||
|
|
||||||
|
The term 'firmware' refers to a binary blob that contains the microcode as
|
||||||
|
well as other data that
|
||||||
|
|
||||||
|
1) describes the microcode's purpose
|
||||||
|
2) describes how and where to upload the microcode
|
||||||
|
3) specifies the values of various registers
|
||||||
|
4) includes additional data for use by specific device drivers
|
||||||
|
|
||||||
|
Firmware files are binary files that contain only a firmware.
|
||||||
|
|
||||||
|
IV - Microcode Programming Details
|
||||||
|
===================================
|
||||||
|
|
||||||
|
The QE architecture allows for only one microcode present in I-RAM for each
|
||||||
|
RISC processor. To replace any current microcode, a full QE reset (which
|
||||||
|
disables the microcode) must be performed first.
|
||||||
|
|
||||||
|
QE microcode is uploaded using the following procedure:
|
||||||
|
|
||||||
|
1) The microcode is placed into I-RAM at a specific location, using the
|
||||||
|
IRAM.IADD and IRAM.IDATA registers.
|
||||||
|
|
||||||
|
2) The CERCR.CIR bit is set to 0 or 1, depending on whether the firmware
|
||||||
|
needs split I-RAM. Split I-RAM is only meaningful for SOCs that have
|
||||||
|
QEs with multiple RISC processors, such as the 8360. Splitting the I-RAM
|
||||||
|
allows each processor to run a different microcode, effectively creating an
|
||||||
|
asymmetric multiprocessing (AMP) system.
|
||||||
|
|
||||||
|
3) The TIBCR trap registers are loaded with the addresses of the trap handlers
|
||||||
|
in the microcode.
|
||||||
|
|
||||||
|
4) The RSP.ECCR register is programmed with the value provided.
|
||||||
|
|
||||||
|
5) If necessary, device drivers that need the virtual traps and extended mode
|
||||||
|
data will use them.
|
||||||
|
|
||||||
|
Virtual Microcode Traps
|
||||||
|
|
||||||
|
These virtual traps are conditional branches in the microcode. These are
|
||||||
|
"soft" provisional introduced in the ROMcode in order to enable higher
|
||||||
|
flexibility and save h/w traps If new features are activated or an issue is
|
||||||
|
being fixed in the RAM package utilizing they should be activated. This data
|
||||||
|
structure signals the microcode which of these virtual traps is active.
|
||||||
|
|
||||||
|
This structure contains 6 words that the application should copy to some
|
||||||
|
specific been defined. This table describes the structure.
|
||||||
|
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| Offset in | | Destination Offset | Size of |
|
||||||
|
| array | Protocol | within PRAM | Operand |
|
||||||
|
--------------------------------------------------------------|
|
||||||
|
| 0 | Ethernet | 0xF8 | 4 bytes |
|
||||||
|
| | interworking | | |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| 4 | ATM | 0xF8 | 4 bytes |
|
||||||
|
| | interworking | | |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| 8 | PPP | 0xF8 | 4 bytes |
|
||||||
|
| | interworking | | |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| 12 | Ethernet RX | 0x22 | 1 byte |
|
||||||
|
| | Distributor Page | | |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| 16 | ATM Globtal | 0x28 | 1 byte |
|
||||||
|
| | Params Table | | |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
| 20 | Insert Frame | 0xF8 | 4 bytes |
|
||||||
|
---------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
Extended Modes
|
||||||
|
|
||||||
|
This is a double word bit array (64 bits) that defines special functionality
|
||||||
|
which has an impact on the softwarew drivers. Each bit has its own impact
|
||||||
|
and has special instructions for the s/w associated with it. This structure is
|
||||||
|
described in this table:
|
||||||
|
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| Bit # | Name | Description |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 0 | General | Indicates that prior to each host command |
|
||||||
|
| | push command | given by the application, the software must |
|
||||||
|
| | | assert a special host command (push command)|
|
||||||
|
| | | CECDR = 0x00800000. |
|
||||||
|
| | | CECR = 0x01c1000f. |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 1 | UCC ATM | Indicates that after issuing ATM RX INIT |
|
||||||
|
| | RX INIT | command, the host must issue another special|
|
||||||
|
| | push command | command (push command) and immediately |
|
||||||
|
| | | following that re-issue the ATM RX INIT |
|
||||||
|
| | | command. (This makes the sequence of |
|
||||||
|
| | | initializing the ATM receiver a sequence of |
|
||||||
|
| | | three host commands) |
|
||||||
|
| | | CECDR = 0x00800000. |
|
||||||
|
| | | CECR = 0x01c1000f. |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 2 | Add/remove | Indicates that following the specific host |
|
||||||
|
| | command | command: "Add/Remove entry in Hash Lookup |
|
||||||
|
| | validation | Table" used in Interworking setup, the user |
|
||||||
|
| | | must issue another command. |
|
||||||
|
| | | CECDR = 0xce000003. |
|
||||||
|
| | | CECR = 0x01c10f58. |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 3 | General push | Indicates that the s/w has to initialize |
|
||||||
|
| | command | some pointers in the Ethernet thread pages |
|
||||||
|
| | | which are used when Header Compression is |
|
||||||
|
| | | activated. The full details of these |
|
||||||
|
| | | pointers is located in the software drivers.|
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 4 | General push | Indicates that after issuing Ethernet TX |
|
||||||
|
| | command | INIT command, user must issue this command |
|
||||||
|
| | | for each SNUM of Ethernet TX thread. |
|
||||||
|
| | | CECDR = 0x00800003. |
|
||||||
|
| | | CECR = 0x7'b{0}, 8'b{Enet TX thread SNUM}, |
|
||||||
|
| | | 1'b{1}, 12'b{0}, 4'b{1} |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
| 5 - 31 | N/A | Reserved, set to zero. |
|
||||||
|
-----------------------------------------------------------------------
|
||||||
|
|
||||||
|
V - Firmware Structure Layout
|
||||||
|
==============================
|
||||||
|
|
||||||
|
QE microcode from Freescale is typically provided as a header file. This
|
||||||
|
header file contains macros that define the microcode binary itself as well as
|
||||||
|
some other data used in uploading that microcode. The format of these files
|
||||||
|
do not lend themselves to simple inclusion into other code. Hence,
|
||||||
|
the need for a more portable format. This section defines that format.
|
||||||
|
|
||||||
|
Instead of distributing a header file, the microcode and related data are
|
||||||
|
embedded into a binary blob. This blob is passed to the qe_upload_firmware()
|
||||||
|
function, which parses the blob and performs everything necessary to upload
|
||||||
|
the microcode.
|
||||||
|
|
||||||
|
All integers are big-endian. See the comments for function
|
||||||
|
qe_upload_firmware() for up-to-date implementation information.
|
||||||
|
|
||||||
|
This structure supports versioning, where the version of the structure is
|
||||||
|
embedded into the structure itself. To ensure forward and backwards
|
||||||
|
compatibility, all versions of the structure must use the same 'qe_header'
|
||||||
|
structure at the beginning.
|
||||||
|
|
||||||
|
'header' (type: struct qe_header):
|
||||||
|
The 'length' field is the size, in bytes, of the entire structure,
|
||||||
|
including all the microcode embedded in it, as well as the CRC (if
|
||||||
|
present).
|
||||||
|
|
||||||
|
The 'magic' field is an array of three bytes that contains the letters
|
||||||
|
'Q', 'E', and 'F'. This is an identifier that indicates that this
|
||||||
|
structure is a QE Firmware structure.
|
||||||
|
|
||||||
|
The 'version' field is a single byte that indicates the version of this
|
||||||
|
structure. If the layout of the structure should ever need to be
|
||||||
|
changed to add support for additional types of microcode, then the
|
||||||
|
version number should also be changed.
|
||||||
|
|
||||||
|
The 'id' field is a null-terminated string(suitable for printing) that
|
||||||
|
identifies the firmware.
|
||||||
|
|
||||||
|
The 'count' field indicates the number of 'microcode' structures. There
|
||||||
|
must be one and only one 'microcode' structure for each RISC processor.
|
||||||
|
Therefore, this field also represents the number of RISC processors for this
|
||||||
|
SOC.
|
||||||
|
|
||||||
|
The 'soc' structure contains the SOC numbers and revisions used to match
|
||||||
|
the microcode to the SOC itself. Normally, the microcode loader should
|
||||||
|
check the data in this structure with the SOC number and revisions, and
|
||||||
|
only upload the microcode if there's a match. However, this check is not
|
||||||
|
made on all platforms.
|
||||||
|
|
||||||
|
Although it is not recommended, you can specify '0' in the soc.model
|
||||||
|
field to skip matching SOCs altogether.
|
||||||
|
|
||||||
|
The 'model' field is a 16-bit number that matches the actual SOC. The
|
||||||
|
'major' and 'minor' fields are the major and minor revision numbrs,
|
||||||
|
respectively, of the SOC.
|
||||||
|
|
||||||
|
For example, to match the 8323, revision 1.0:
|
||||||
|
soc.model = 8323
|
||||||
|
soc.major = 1
|
||||||
|
soc.minor = 0
|
||||||
|
|
||||||
|
'padding' is neccessary for structure alignment. This field ensures that the
|
||||||
|
'extended_modes' field is aligned on a 64-bit boundary.
|
||||||
|
|
||||||
|
'extended_modes' is a bitfield that defines special functionality which has an
|
||||||
|
impact on the device drivers. Each bit has its own impact and has special
|
||||||
|
instructions for the driver associated with it. This field is stored in
|
||||||
|
the QE library and available to any driver that calles qe_get_firmware_info().
|
||||||
|
|
||||||
|
'vtraps' is an array of 8 words that contain virtual trap values for each
|
||||||
|
virtual traps. As with 'extended_modes', this field is stored in the QE
|
||||||
|
library and available to any driver that calles qe_get_firmware_info().
|
||||||
|
|
||||||
|
'microcode' (type: struct qe_microcode):
|
||||||
|
For each RISC processor there is one 'microcode' structure. The first
|
||||||
|
'microcode' structure is for the first RISC, and so on.
|
||||||
|
|
||||||
|
The 'id' field is a null-terminated string suitable for printing that
|
||||||
|
identifies this particular microcode.
|
||||||
|
|
||||||
|
'traps' is an array of 16 words that contain hardware trap values
|
||||||
|
for each of the 16 traps. If trap[i] is 0, then this particular
|
||||||
|
trap is to be ignored (i.e. not written to TIBCR[i]). The entire value
|
||||||
|
is written as-is to the TIBCR[i] register, so be sure to set the EN
|
||||||
|
and T_IBP bits if necessary.
|
||||||
|
|
||||||
|
'eccr' is the value to program into the ECCR register.
|
||||||
|
|
||||||
|
'iram_offset' is the offset into IRAM to start writing the
|
||||||
|
microcode.
|
||||||
|
|
||||||
|
'count' is the number of 32-bit words in the microcode.
|
||||||
|
|
||||||
|
'code_offset' is the offset, in bytes, from the beginning of this
|
||||||
|
structure where the microcode itself can be found. The first
|
||||||
|
microcode binary should be located immediately after the 'microcode'
|
||||||
|
array.
|
||||||
|
|
||||||
|
'major', 'minor', and 'revision' are the major, minor, and revision
|
||||||
|
version numbers, respectively, of the microcode. If all values are 0,
|
||||||
|
then these fields are ignored.
|
||||||
|
|
||||||
|
'reserved' is necessary for structure alignment. Since 'microcode'
|
||||||
|
is an array, the 64-bit 'extended_modes' field needs to be aligned
|
||||||
|
on a 64-bit boundary, and this can only happen if the size of
|
||||||
|
'microcode' is a multiple of 8 bytes. To ensure that, we add
|
||||||
|
'reserved'.
|
||||||
|
|
||||||
|
After the last microcode is a 32-bit CRC. It can be calculated using
|
||||||
|
this algorithm:
|
||||||
|
|
||||||
|
u32 crc32(const u8 *p, unsigned int len)
|
||||||
|
{
|
||||||
|
unsigned int i;
|
||||||
|
u32 crc = 0;
|
||||||
|
|
||||||
|
while (len--) {
|
||||||
|
crc ^= *p++;
|
||||||
|
for (i = 0; i < 8; i++)
|
||||||
|
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0);
|
||||||
|
}
|
||||||
|
return crc;
|
||||||
|
}
|
||||||
|
|
||||||
|
VI - Sample Code for Creating Firmware Files
|
||||||
|
============================================
|
||||||
|
|
||||||
|
A Python program that creates firmware binaries from the header files normally
|
||||||
|
distributed by Freescale can be found on http://opensource.freescale.com.
|
@@ -265,6 +265,7 @@ config TAU_AVERAGE
|
|||||||
config QUICC_ENGINE
|
config QUICC_ENGINE
|
||||||
bool
|
bool
|
||||||
select PPC_LIB_RHEAP
|
select PPC_LIB_RHEAP
|
||||||
|
select CRC32
|
||||||
help
|
help
|
||||||
The QUICC Engine (QE) is a new generation of communications
|
The QUICC Engine (QE) is a new generation of communications
|
||||||
coprocessors on Freescale embedded CPUs (akin to CPM in older chips).
|
coprocessors on Freescale embedded CPUs (akin to CPM in older chips).
|
||||||
|
@@ -25,6 +25,7 @@
|
|||||||
#include <linux/module.h>
|
#include <linux/module.h>
|
||||||
#include <linux/delay.h>
|
#include <linux/delay.h>
|
||||||
#include <linux/ioport.h>
|
#include <linux/ioport.h>
|
||||||
|
#include <linux/crc32.h>
|
||||||
#include <asm/irq.h>
|
#include <asm/irq.h>
|
||||||
#include <asm/page.h>
|
#include <asm/page.h>
|
||||||
#include <asm/pgtable.h>
|
#include <asm/pgtable.h>
|
||||||
@@ -394,3 +395,249 @@ void *qe_muram_addr(unsigned long offset)
|
|||||||
return (void *)&qe_immr->muram[offset];
|
return (void *)&qe_immr->muram[offset];
|
||||||
}
|
}
|
||||||
EXPORT_SYMBOL(qe_muram_addr);
|
EXPORT_SYMBOL(qe_muram_addr);
|
||||||
|
|
||||||
|
/* The maximum number of RISCs we support */
|
||||||
|
#define MAX_QE_RISC 2
|
||||||
|
|
||||||
|
/* Firmware information stored here for qe_get_firmware_info() */
|
||||||
|
static struct qe_firmware_info qe_firmware_info;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set to 1 if QE firmware has been uploaded, and therefore
|
||||||
|
* qe_firmware_info contains valid data.
|
||||||
|
*/
|
||||||
|
static int qe_firmware_uploaded;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Upload a QE microcode
|
||||||
|
*
|
||||||
|
* This function is a worker function for qe_upload_firmware(). It does
|
||||||
|
* the actual uploading of the microcode.
|
||||||
|
*/
|
||||||
|
static void qe_upload_microcode(const void *base,
|
||||||
|
const struct qe_microcode *ucode)
|
||||||
|
{
|
||||||
|
const __be32 *code = base + be32_to_cpu(ucode->code_offset);
|
||||||
|
unsigned int i;
|
||||||
|
|
||||||
|
if (ucode->major || ucode->minor || ucode->revision)
|
||||||
|
printk(KERN_INFO "qe-firmware: "
|
||||||
|
"uploading microcode '%s' version %u.%u.%u\n",
|
||||||
|
ucode->id, ucode->major, ucode->minor, ucode->revision);
|
||||||
|
else
|
||||||
|
printk(KERN_INFO "qe-firmware: "
|
||||||
|
"uploading microcode '%s'\n", ucode->id);
|
||||||
|
|
||||||
|
/* Use auto-increment */
|
||||||
|
out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
|
||||||
|
QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
|
||||||
|
|
||||||
|
for (i = 0; i < be32_to_cpu(ucode->count); i++)
|
||||||
|
out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Upload a microcode to the I-RAM at a specific address.
|
||||||
|
*
|
||||||
|
* See Documentation/powerpc/qe-firmware.txt for information on QE microcode
|
||||||
|
* uploading.
|
||||||
|
*
|
||||||
|
* Currently, only version 1 is supported, so the 'version' field must be
|
||||||
|
* set to 1.
|
||||||
|
*
|
||||||
|
* The SOC model and revision are not validated, they are only displayed for
|
||||||
|
* informational purposes.
|
||||||
|
*
|
||||||
|
* 'calc_size' is the calculated size, in bytes, of the firmware structure and
|
||||||
|
* all of the microcode structures, minus the CRC.
|
||||||
|
*
|
||||||
|
* 'length' is the size that the structure says it is, including the CRC.
|
||||||
|
*/
|
||||||
|
int qe_upload_firmware(const struct qe_firmware *firmware)
|
||||||
|
{
|
||||||
|
unsigned int i;
|
||||||
|
unsigned int j;
|
||||||
|
u32 crc;
|
||||||
|
size_t calc_size = sizeof(struct qe_firmware);
|
||||||
|
size_t length;
|
||||||
|
const struct qe_header *hdr;
|
||||||
|
|
||||||
|
if (!firmware) {
|
||||||
|
printk(KERN_ERR "qe-firmware: invalid pointer\n");
|
||||||
|
return -EINVAL;
|
||||||
|
}
|
||||||
|
|
||||||
|
hdr = &firmware->header;
|
||||||
|
length = be32_to_cpu(hdr->length);
|
||||||
|
|
||||||
|
/* Check the magic */
|
||||||
|
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
|
||||||
|
(hdr->magic[2] != 'F')) {
|
||||||
|
printk(KERN_ERR "qe-firmware: not a microcode\n");
|
||||||
|
return -EPERM;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check the version */
|
||||||
|
if (hdr->version != 1) {
|
||||||
|
printk(KERN_ERR "qe-firmware: unsupported version\n");
|
||||||
|
return -EPERM;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Validate some of the fields */
|
||||||
|
if ((firmware->count < 1) || (firmware->count >= MAX_QE_RISC)) {
|
||||||
|
printk(KERN_ERR "qe-firmware: invalid data\n");
|
||||||
|
return -EINVAL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Validate the length and check if there's a CRC */
|
||||||
|
calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
|
||||||
|
|
||||||
|
for (i = 0; i < firmware->count; i++)
|
||||||
|
/*
|
||||||
|
* For situations where the second RISC uses the same microcode
|
||||||
|
* as the first, the 'code_offset' and 'count' fields will be
|
||||||
|
* zero, so it's okay to add those.
|
||||||
|
*/
|
||||||
|
calc_size += sizeof(__be32) *
|
||||||
|
be32_to_cpu(firmware->microcode[i].count);
|
||||||
|
|
||||||
|
/* Validate the length */
|
||||||
|
if (length != calc_size + sizeof(__be32)) {
|
||||||
|
printk(KERN_ERR "qe-firmware: invalid length\n");
|
||||||
|
return -EPERM;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Validate the CRC */
|
||||||
|
crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
|
||||||
|
if (crc != crc32(0, firmware, calc_size)) {
|
||||||
|
printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
|
||||||
|
return -EIO;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If the microcode calls for it, split the I-RAM.
|
||||||
|
*/
|
||||||
|
if (!firmware->split)
|
||||||
|
setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
|
||||||
|
|
||||||
|
if (firmware->soc.model)
|
||||||
|
printk(KERN_INFO
|
||||||
|
"qe-firmware: firmware '%s' for %u V%u.%u\n",
|
||||||
|
firmware->id, be16_to_cpu(firmware->soc.model),
|
||||||
|
firmware->soc.major, firmware->soc.minor);
|
||||||
|
else
|
||||||
|
printk(KERN_INFO "qe-firmware: firmware '%s'\n",
|
||||||
|
firmware->id);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The QE only supports one microcode per RISC, so clear out all the
|
||||||
|
* saved microcode information and put in the new.
|
||||||
|
*/
|
||||||
|
memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
|
||||||
|
strcpy(qe_firmware_info.id, firmware->id);
|
||||||
|
qe_firmware_info.extended_modes = firmware->extended_modes;
|
||||||
|
memcpy(qe_firmware_info.vtraps, firmware->vtraps,
|
||||||
|
sizeof(firmware->vtraps));
|
||||||
|
|
||||||
|
/* Loop through each microcode. */
|
||||||
|
for (i = 0; i < firmware->count; i++) {
|
||||||
|
const struct qe_microcode *ucode = &firmware->microcode[i];
|
||||||
|
|
||||||
|
/* Upload a microcode if it's present */
|
||||||
|
if (ucode->code_offset)
|
||||||
|
qe_upload_microcode(firmware, ucode);
|
||||||
|
|
||||||
|
/* Program the traps for this processor */
|
||||||
|
for (j = 0; j < 16; j++) {
|
||||||
|
u32 trap = be32_to_cpu(ucode->traps[j]);
|
||||||
|
|
||||||
|
if (trap)
|
||||||
|
out_be32(&qe_immr->rsp[i].tibcr[j], trap);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Enable traps */
|
||||||
|
out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
|
||||||
|
}
|
||||||
|
|
||||||
|
qe_firmware_uploaded = 1;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
EXPORT_SYMBOL(qe_upload_firmware);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Get info on the currently-loaded firmware
|
||||||
|
*
|
||||||
|
* This function also checks the device tree to see if the boot loader has
|
||||||
|
* uploaded a firmware already.
|
||||||
|
*/
|
||||||
|
struct qe_firmware_info *qe_get_firmware_info(void)
|
||||||
|
{
|
||||||
|
static int initialized;
|
||||||
|
struct property *prop;
|
||||||
|
struct device_node *qe;
|
||||||
|
struct device_node *fw = NULL;
|
||||||
|
const char *sprop;
|
||||||
|
unsigned int i;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If we haven't checked yet, and a driver hasn't uploaded a firmware
|
||||||
|
* yet, then check the device tree for information.
|
||||||
|
*/
|
||||||
|
if (initialized || qe_firmware_uploaded)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
initialized = 1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Newer device trees have an "fsl,qe" compatible property for the QE
|
||||||
|
* node, but we still need to support older device trees.
|
||||||
|
*/
|
||||||
|
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
|
||||||
|
if (!qe) {
|
||||||
|
qe = of_find_node_by_type(NULL, "qe");
|
||||||
|
if (!qe)
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Find the 'firmware' child node */
|
||||||
|
for_each_child_of_node(qe, fw) {
|
||||||
|
if (strcmp(fw->name, "firmware") == 0)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
of_node_put(qe);
|
||||||
|
|
||||||
|
/* Did we find the 'firmware' node? */
|
||||||
|
if (!fw)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
qe_firmware_uploaded = 1;
|
||||||
|
|
||||||
|
/* Copy the data into qe_firmware_info*/
|
||||||
|
sprop = of_get_property(fw, "id", NULL);
|
||||||
|
if (sprop)
|
||||||
|
strncpy(qe_firmware_info.id, sprop,
|
||||||
|
sizeof(qe_firmware_info.id) - 1);
|
||||||
|
|
||||||
|
prop = of_find_property(fw, "extended-modes", NULL);
|
||||||
|
if (prop && (prop->length == sizeof(u64))) {
|
||||||
|
const u64 *iprop = prop->value;
|
||||||
|
|
||||||
|
qe_firmware_info.extended_modes = *iprop;
|
||||||
|
}
|
||||||
|
|
||||||
|
prop = of_find_property(fw, "virtual-traps", NULL);
|
||||||
|
if (prop && (prop->length == 32)) {
|
||||||
|
const u32 *iprop = prop->value;
|
||||||
|
|
||||||
|
for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
|
||||||
|
qe_firmware_info.vtraps[i] = iprop[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
of_node_put(fw);
|
||||||
|
|
||||||
|
return &qe_firmware_info;
|
||||||
|
}
|
||||||
|
EXPORT_SYMBOL(qe_get_firmware_info);
|
||||||
|
|
||||||
|
@@ -393,9 +393,39 @@ struct dbg {
|
|||||||
u8 res2[0x48];
|
u8 res2[0x48];
|
||||||
} __attribute__ ((packed));
|
} __attribute__ ((packed));
|
||||||
|
|
||||||
/* RISC Special Registers (Trap and Breakpoint) */
|
/*
|
||||||
|
* RISC Special Registers (Trap and Breakpoint). These are described in
|
||||||
|
* the QE Developer's Handbook.
|
||||||
|
*/
|
||||||
struct rsp {
|
struct rsp {
|
||||||
u32 reg[0x40]; /* 64 32-bit registers */
|
__be32 tibcr[16]; /* Trap/instruction breakpoint control regs */
|
||||||
|
u8 res0[64];
|
||||||
|
__be32 ibcr0;
|
||||||
|
__be32 ibs0;
|
||||||
|
__be32 ibcnr0;
|
||||||
|
u8 res1[4];
|
||||||
|
__be32 ibcr1;
|
||||||
|
__be32 ibs1;
|
||||||
|
__be32 ibcnr1;
|
||||||
|
__be32 npcr;
|
||||||
|
__be32 dbcr;
|
||||||
|
__be32 dbar;
|
||||||
|
__be32 dbamr;
|
||||||
|
__be32 dbsr;
|
||||||
|
__be32 dbcnr;
|
||||||
|
u8 res2[12];
|
||||||
|
__be32 dbdr_h;
|
||||||
|
__be32 dbdr_l;
|
||||||
|
__be32 dbdmr_h;
|
||||||
|
__be32 dbdmr_l;
|
||||||
|
__be32 bsr;
|
||||||
|
__be32 bor;
|
||||||
|
__be32 bior;
|
||||||
|
u8 res3[4];
|
||||||
|
__be32 iatr[4];
|
||||||
|
__be32 eccr; /* Exception control configuration register */
|
||||||
|
__be32 eicr;
|
||||||
|
u8 res4[0x100-0xf8];
|
||||||
} __attribute__ ((packed));
|
} __attribute__ ((packed));
|
||||||
|
|
||||||
struct qe_immap {
|
struct qe_immap {
|
||||||
|
@@ -94,6 +94,58 @@ unsigned long qe_muram_alloc_fixed(unsigned long offset, int size);
|
|||||||
void qe_muram_dump(void);
|
void qe_muram_dump(void);
|
||||||
void *qe_muram_addr(unsigned long offset);
|
void *qe_muram_addr(unsigned long offset);
|
||||||
|
|
||||||
|
/* Structure that defines QE firmware binary files.
|
||||||
|
*
|
||||||
|
* See Documentation/powerpc/qe-firmware.txt for a description of these
|
||||||
|
* fields.
|
||||||
|
*/
|
||||||
|
struct qe_firmware {
|
||||||
|
struct qe_header {
|
||||||
|
__be32 length; /* Length of the entire structure, in bytes */
|
||||||
|
u8 magic[3]; /* Set to { 'Q', 'E', 'F' } */
|
||||||
|
u8 version; /* Version of this layout. First ver is '1' */
|
||||||
|
} header;
|
||||||
|
u8 id[62]; /* Null-terminated identifier string */
|
||||||
|
u8 split; /* 0 = shared I-RAM, 1 = split I-RAM */
|
||||||
|
u8 count; /* Number of microcode[] structures */
|
||||||
|
struct {
|
||||||
|
__be16 model; /* The SOC model */
|
||||||
|
u8 major; /* The SOC revision major */
|
||||||
|
u8 minor; /* The SOC revision minor */
|
||||||
|
} __attribute__ ((packed)) soc;
|
||||||
|
u8 padding[4]; /* Reserved, for alignment */
|
||||||
|
__be64 extended_modes; /* Extended modes */
|
||||||
|
__be32 vtraps[8]; /* Virtual trap addresses */
|
||||||
|
u8 reserved[4]; /* Reserved, for future expansion */
|
||||||
|
struct qe_microcode {
|
||||||
|
u8 id[32]; /* Null-terminated identifier */
|
||||||
|
__be32 traps[16]; /* Trap addresses, 0 == ignore */
|
||||||
|
__be32 eccr; /* The value for the ECCR register */
|
||||||
|
__be32 iram_offset; /* Offset into I-RAM for the code */
|
||||||
|
__be32 count; /* Number of 32-bit words of the code */
|
||||||
|
__be32 code_offset; /* Offset of the actual microcode */
|
||||||
|
u8 major; /* The microcode version major */
|
||||||
|
u8 minor; /* The microcode version minor */
|
||||||
|
u8 revision; /* The microcode version revision */
|
||||||
|
u8 padding; /* Reserved, for alignment */
|
||||||
|
u8 reserved[4]; /* Reserved, for future expansion */
|
||||||
|
} __attribute__ ((packed)) microcode[1];
|
||||||
|
/* All microcode binaries should be located here */
|
||||||
|
/* CRC32 should be located here, after the microcode binaries */
|
||||||
|
} __attribute__ ((packed));
|
||||||
|
|
||||||
|
struct qe_firmware_info {
|
||||||
|
char id[64]; /* Firmware name */
|
||||||
|
u32 vtraps[8]; /* Virtual trap addresses */
|
||||||
|
u64 extended_modes; /* Extended modes */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Upload a firmware to the QE */
|
||||||
|
int qe_upload_firmware(const struct qe_firmware *firmware);
|
||||||
|
|
||||||
|
/* Obtain information on the uploaded firmware */
|
||||||
|
struct qe_firmware_info *qe_get_firmware_info(void);
|
||||||
|
|
||||||
/* Buffer descriptors */
|
/* Buffer descriptors */
|
||||||
struct qe_bd {
|
struct qe_bd {
|
||||||
__be16 status;
|
__be16 status;
|
||||||
@@ -329,6 +381,15 @@ enum comm_dir {
|
|||||||
|
|
||||||
#define QE_SDEBCR_BA_MASK 0x01FFFFFF
|
#define QE_SDEBCR_BA_MASK 0x01FFFFFF
|
||||||
|
|
||||||
|
/* Communication Processor */
|
||||||
|
#define QE_CP_CERCR_MEE 0x8000 /* Multi-user RAM ECC enable */
|
||||||
|
#define QE_CP_CERCR_IEE 0x4000 /* Instruction RAM ECC enable */
|
||||||
|
#define QE_CP_CERCR_CIR 0x0800 /* Common instruction RAM */
|
||||||
|
|
||||||
|
/* I-RAM */
|
||||||
|
#define QE_IRAM_IADD_AIE 0x80000000 /* Auto Increment Enable */
|
||||||
|
#define QE_IRAM_IADD_BADDR 0x00080000 /* Base Address */
|
||||||
|
|
||||||
/* UPC */
|
/* UPC */
|
||||||
#define UPGCR_PROTOCOL 0x80000000 /* protocol ul2 or pl2 */
|
#define UPGCR_PROTOCOL 0x80000000 /* protocol ul2 or pl2 */
|
||||||
#define UPGCR_TMS 0x40000000 /* Transmit master/slave mode */
|
#define UPGCR_TMS 0x40000000 /* Transmit master/slave mode */
|
||||||
|
Reference in New Issue
Block a user