Merge branch 'slab/next' into for-linus

This commit is contained in:
Pekka Enberg
2011-03-20 18:12:03 +02:00
5 changed files with 107 additions and 88 deletions

View File

@@ -105,7 +105,6 @@ void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *); int kmem_cache_shrink(struct kmem_cache *);
void kmem_cache_free(struct kmem_cache *, void *); void kmem_cache_free(struct kmem_cache *, void *);
unsigned int kmem_cache_size(struct kmem_cache *); unsigned int kmem_cache_size(struct kmem_cache *);
const char *kmem_cache_name(struct kmem_cache *);
/* /*
* Please use this macro to create slab caches. Simply specify the * Please use this macro to create slab caches. Simply specify the

View File

@@ -83,6 +83,7 @@ struct kmem_cache {
void (*ctor)(void *); void (*ctor)(void *);
int inuse; /* Offset to metadata */ int inuse; /* Offset to metadata */
int align; /* Alignment */ int align; /* Alignment */
int reserved; /* Reserved bytes at the end of slabs */
unsigned long min_partial; unsigned long min_partial;
const char *name; /* Name (only for display!) */ const char *name; /* Name (only for display!) */
struct list_head list; /* List of slab caches */ struct list_head list; /* List of slab caches */

View File

@@ -190,22 +190,6 @@ typedef unsigned int kmem_bufctl_t;
#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
/*
* struct slab
*
* Manages the objs in a slab. Placed either at the beginning of mem allocated
* for a slab, or allocated from an general cache.
* Slabs are chained into three list: fully used, partial, fully free slabs.
*/
struct slab {
struct list_head list;
unsigned long colouroff;
void *s_mem; /* including colour offset */
unsigned int inuse; /* num of objs active in slab */
kmem_bufctl_t free;
unsigned short nodeid;
};
/* /*
* struct slab_rcu * struct slab_rcu
* *
@@ -219,8 +203,6 @@ struct slab {
* *
* rcu_read_lock before reading the address, then rcu_read_unlock after * rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address. * taking the spinlock within the structure expected at that address.
*
* We assume struct slab_rcu can overlay struct slab when destroying.
*/ */
struct slab_rcu { struct slab_rcu {
struct rcu_head head; struct rcu_head head;
@@ -228,6 +210,27 @@ struct slab_rcu {
void *addr; void *addr;
}; };
/*
* struct slab
*
* Manages the objs in a slab. Placed either at the beginning of mem allocated
* for a slab, or allocated from an general cache.
* Slabs are chained into three list: fully used, partial, fully free slabs.
*/
struct slab {
union {
struct {
struct list_head list;
unsigned long colouroff;
void *s_mem; /* including colour offset */
unsigned int inuse; /* num of objs active in slab */
kmem_bufctl_t free;
unsigned short nodeid;
};
struct slab_rcu __slab_cover_slab_rcu;
};
};
/* /*
* struct array_cache * struct array_cache
* *
@@ -2147,8 +2150,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
* *
* @name must be valid until the cache is destroyed. This implies that * @name must be valid until the cache is destroyed. This implies that
* the module calling this has to destroy the cache before getting unloaded. * the module calling this has to destroy the cache before getting unloaded.
* Note that kmem_cache_name() is not guaranteed to return the same pointer,
* therefore applications must manage it themselves.
* *
* The flags are * The flags are
* *
@@ -2288,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
if (ralign < align) { if (ralign < align) {
ralign = align; ralign = align;
} }
/* disable debug if not aligning with REDZONE_ALIGN */ /* disable debug if necessary */
if (ralign & (__alignof__(unsigned long long) - 1)) if (ralign > __alignof__(unsigned long long))
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
/* /*
* 4) Store it. * 4) Store it.
@@ -2315,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/ */
if (flags & SLAB_RED_ZONE) { if (flags & SLAB_RED_ZONE) {
/* add space for red zone words */ /* add space for red zone words */
cachep->obj_offset += align; cachep->obj_offset += sizeof(unsigned long long);
size += align + sizeof(unsigned long long); size += 2 * sizeof(unsigned long long);
} }
if (flags & SLAB_STORE_USER) { if (flags & SLAB_STORE_USER) {
/* user store requires one word storage behind the end of /* user store requires one word storage behind the end of
@@ -3840,12 +3841,6 @@ unsigned int kmem_cache_size(struct kmem_cache *cachep)
} }
EXPORT_SYMBOL(kmem_cache_size); EXPORT_SYMBOL(kmem_cache_size);
const char *kmem_cache_name(struct kmem_cache *cachep)
{
return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);
/* /*
* This initializes kmem_list3 or resizes various caches for all nodes. * This initializes kmem_list3 or resizes various caches for all nodes.
*/ */

View File

@@ -666,12 +666,6 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
} }
EXPORT_SYMBOL(kmem_cache_size); EXPORT_SYMBOL(kmem_cache_size);
const char *kmem_cache_name(struct kmem_cache *c)
{
return c->name;
}
EXPORT_SYMBOL(kmem_cache_name);
int kmem_cache_shrink(struct kmem_cache *d) int kmem_cache_shrink(struct kmem_cache *d)
{ {
return 0; return 0;

132
mm/slub.c
View File

@@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
return (p - addr) / s->size; return (p - addr) / s->size;
} }
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->objsize;
#endif
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
}
static inline int order_objects(int order, unsigned long size, int reserved)
{
return ((PAGE_SIZE << order) - reserved) / size;
}
static inline struct kmem_cache_order_objects oo_make(int order, static inline struct kmem_cache_order_objects oo_make(int order,
unsigned long size) unsigned long size, int reserved)
{ {
struct kmem_cache_order_objects x = { struct kmem_cache_order_objects x = {
(order << OO_SHIFT) + (PAGE_SIZE << order) / size (order << OO_SHIFT) + order_objects(order, size, reserved)
}; };
return x; return x;
@@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
return 1; return 1;
start = page_address(page); start = page_address(page);
length = (PAGE_SIZE << compound_order(page)); length = (PAGE_SIZE << compound_order(page)) - s->reserved;
end = start + length; end = start + length;
remainder = length % s->size; remainder = length % s->size;
if (!remainder) if (!remainder)
@@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page)
return 0; return 0;
} }
maxobj = (PAGE_SIZE << compound_order(page)) / s->size; maxobj = order_objects(compound_order(page), s->size, s->reserved);
if (page->objects > maxobj) { if (page->objects > maxobj) {
slab_err(s, page, "objects %u > max %u", slab_err(s, page, "objects %u > max %u",
s->name, page->objects, maxobj); s->name, page->objects, maxobj);
@@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
nr++; nr++;
} }
max_objects = (PAGE_SIZE << compound_order(page)) / s->size; max_objects = order_objects(compound_order(page), s->size, s->reserved);
if (max_objects > MAX_OBJS_PER_PAGE) if (max_objects > MAX_OBJS_PER_PAGE)
max_objects = MAX_OBJS_PER_PAGE; max_objects = MAX_OBJS_PER_PAGE;
@@ -800,7 +829,7 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{ {
flags &= gfp_allowed_mask; flags &= gfp_allowed_mask;
kmemcheck_slab_alloc(s, flags, object, s->objsize); kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
} }
@@ -1249,21 +1278,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
__free_pages(page, order); __free_pages(page, order);
} }
#define need_reserve_slab_rcu \
(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
static void rcu_free_slab(struct rcu_head *h) static void rcu_free_slab(struct rcu_head *h)
{ {
struct page *page; struct page *page;
page = container_of((struct list_head *)h, struct page, lru); if (need_reserve_slab_rcu)
page = virt_to_head_page(h);
else
page = container_of((struct list_head *)h, struct page, lru);
__free_slab(page->slab, page); __free_slab(page->slab, page);
} }
static void free_slab(struct kmem_cache *s, struct page *page) static void free_slab(struct kmem_cache *s, struct page *page)
{ {
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
/* struct rcu_head *head;
* RCU free overloads the RCU head over the LRU
*/ if (need_reserve_slab_rcu) {
struct rcu_head *head = (void *)&page->lru; int order = compound_order(page);
int offset = (PAGE_SIZE << order) - s->reserved;
VM_BUG_ON(s->reserved != sizeof(*head));
head = page_address(page) + offset;
} else {
/*
* RCU free overloads the RCU head over the LRU
*/
head = (void *)&page->lru;
}
call_rcu(head, rcu_free_slab); call_rcu(head, rcu_free_slab);
} else } else
@@ -1988,13 +2034,13 @@ static int slub_nomerge;
* the smallest order which will fit the object. * the smallest order which will fit the object.
*/ */
static inline int slab_order(int size, int min_objects, static inline int slab_order(int size, int min_objects,
int max_order, int fract_leftover) int max_order, int fract_leftover, int reserved)
{ {
int order; int order;
int rem; int rem;
int min_order = slub_min_order; int min_order = slub_min_order;
if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
return get_order(size * MAX_OBJS_PER_PAGE) - 1; return get_order(size * MAX_OBJS_PER_PAGE) - 1;
for (order = max(min_order, for (order = max(min_order,
@@ -2003,10 +2049,10 @@ static inline int slab_order(int size, int min_objects,
unsigned long slab_size = PAGE_SIZE << order; unsigned long slab_size = PAGE_SIZE << order;
if (slab_size < min_objects * size) if (slab_size < min_objects * size + reserved)
continue; continue;
rem = slab_size % size; rem = (slab_size - reserved) % size;
if (rem <= slab_size / fract_leftover) if (rem <= slab_size / fract_leftover)
break; break;
@@ -2016,7 +2062,7 @@ static inline int slab_order(int size, int min_objects,
return order; return order;
} }
static inline int calculate_order(int size) static inline int calculate_order(int size, int reserved)
{ {
int order; int order;
int min_objects; int min_objects;
@@ -2034,14 +2080,14 @@ static inline int calculate_order(int size)
min_objects = slub_min_objects; min_objects = slub_min_objects;
if (!min_objects) if (!min_objects)
min_objects = 4 * (fls(nr_cpu_ids) + 1); min_objects = 4 * (fls(nr_cpu_ids) + 1);
max_objects = (PAGE_SIZE << slub_max_order)/size; max_objects = order_objects(slub_max_order, size, reserved);
min_objects = min(min_objects, max_objects); min_objects = min(min_objects, max_objects);
while (min_objects > 1) { while (min_objects > 1) {
fraction = 16; fraction = 16;
while (fraction >= 4) { while (fraction >= 4) {
order = slab_order(size, min_objects, order = slab_order(size, min_objects,
slub_max_order, fraction); slub_max_order, fraction, reserved);
if (order <= slub_max_order) if (order <= slub_max_order)
return order; return order;
fraction /= 2; fraction /= 2;
@@ -2053,14 +2099,14 @@ static inline int calculate_order(int size)
* We were unable to place multiple objects in a slab. Now * We were unable to place multiple objects in a slab. Now
* lets see if we can place a single object there. * lets see if we can place a single object there.
*/ */
order = slab_order(size, 1, slub_max_order, 1); order = slab_order(size, 1, slub_max_order, 1, reserved);
if (order <= slub_max_order) if (order <= slub_max_order)
return order; return order;
/* /*
* Doh this slab cannot be placed using slub_max_order. * Doh this slab cannot be placed using slub_max_order.
*/ */
order = slab_order(size, 1, MAX_ORDER, 1); order = slab_order(size, 1, MAX_ORDER, 1, reserved);
if (order < MAX_ORDER) if (order < MAX_ORDER)
return order; return order;
return -ENOSYS; return -ENOSYS;
@@ -2311,7 +2357,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
if (forced_order >= 0) if (forced_order >= 0)
order = forced_order; order = forced_order;
else else
order = calculate_order(size); order = calculate_order(size, s->reserved);
if (order < 0) if (order < 0)
return 0; return 0;
@@ -2329,8 +2375,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
/* /*
* Determine the number of objects per slab * Determine the number of objects per slab
*/ */
s->oo = oo_make(order, size); s->oo = oo_make(order, size, s->reserved);
s->min = oo_make(get_order(size), size); s->min = oo_make(get_order(size), size, s->reserved);
if (oo_objects(s->oo) > oo_objects(s->max)) if (oo_objects(s->oo) > oo_objects(s->max))
s->max = s->oo; s->max = s->oo;
@@ -2349,6 +2395,10 @@ static int kmem_cache_open(struct kmem_cache *s,
s->objsize = size; s->objsize = size;
s->align = align; s->align = align;
s->flags = kmem_cache_flags(size, flags, name, ctor); s->flags = kmem_cache_flags(size, flags, name, ctor);
s->reserved = 0;
if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
s->reserved = sizeof(struct rcu_head);
if (!calculate_sizes(s, -1)) if (!calculate_sizes(s, -1))
goto error; goto error;
@@ -2399,12 +2449,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s)
} }
EXPORT_SYMBOL(kmem_cache_size); EXPORT_SYMBOL(kmem_cache_size);
const char *kmem_cache_name(struct kmem_cache *s)
{
return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);
static void list_slab_objects(struct kmem_cache *s, struct page *page, static void list_slab_objects(struct kmem_cache *s, struct page *page,
const char *text) const char *text)
{ {
@@ -2696,7 +2740,6 @@ EXPORT_SYMBOL(__kmalloc_node);
size_t ksize(const void *object) size_t ksize(const void *object)
{ {
struct page *page; struct page *page;
struct kmem_cache *s;
if (unlikely(object == ZERO_SIZE_PTR)) if (unlikely(object == ZERO_SIZE_PTR))
return 0; return 0;
@@ -2707,28 +2750,8 @@ size_t ksize(const void *object)
WARN_ON(!PageCompound(page)); WARN_ON(!PageCompound(page));
return PAGE_SIZE << compound_order(page); return PAGE_SIZE << compound_order(page);
} }
s = page->slab;
#ifdef CONFIG_SLUB_DEBUG return slab_ksize(page->slab);
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->objsize;
#endif
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
} }
EXPORT_SYMBOL(ksize); EXPORT_SYMBOL(ksize);
@@ -4017,6 +4040,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
} }
SLAB_ATTR_RO(destroy_by_rcu); SLAB_ATTR_RO(destroy_by_rcu);
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);
#ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf) static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{ {
@@ -4303,6 +4332,7 @@ static struct attribute *slab_attrs[] = {
&reclaim_account_attr.attr, &reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr, &destroy_by_rcu_attr.attr,
&shrink_attr.attr, &shrink_attr.attr,
&reserved_attr.attr,
#ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG
&total_objects_attr.attr, &total_objects_attr.attr,
&slabs_attr.attr, &slabs_attr.attr,