mm: directly use __mlock_vma_pages_range() in find_extend_vma()

In find_extend_vma(), we don't need mlock_vma_pages_range() to verify
the vma type - we know we're working with a stack.  So, we can call
directly into __mlock_vma_pages_range(), and remove the last
make_pages_present() call site.

Note that we don't use mm_populate() here, so we can't release the
mmap_sem while allocating new stack pages.  This is deemed acceptable,
because the stack vmas grow by a bounded number of pages at a time, and
these are anon pages so we don't have to read from disk to populate
them.

Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Andy Lutomirski <luto@amacapital.net>
Cc: Greg Ungerer <gregungerer@westnet.com.au>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Michel Lespinasse
2013-02-22 16:32:44 -08:00
committed by Linus Torvalds
parent c22c0d6344
commit cea10a19b7
5 changed files with 9 additions and 87 deletions

View File

@@ -155,9 +155,8 @@ void munlock_vma_page(struct page *page)
*
* vma->vm_mm->mmap_sem must be held for at least read.
*/
static long __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
int *nonblocking)
long __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start;
@@ -202,56 +201,6 @@ static int __mlock_posix_error_return(long retval)
return retval;
}
/**
* mlock_vma_pages_range() - mlock pages in specified vma range.
* @vma - the vma containing the specfied address range
* @start - starting address in @vma to mlock
* @end - end address [+1] in @vma to mlock
*
* For mmap()/mremap()/expansion of mlocked vma.
*
* return 0 on success for "normal" vmas.
*
* return number of pages [> 0] to be removed from locked_vm on success
* of "special" vmas.
*/
long mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int nr_pages = (end - start) / PAGE_SIZE;
BUG_ON(!(vma->vm_flags & VM_LOCKED));
/*
* filter unlockable vmas
*/
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
goto no_mlock;
if (!((vma->vm_flags & VM_DONTEXPAND) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm))) {
__mlock_vma_pages_range(vma, start, end, NULL);
/* Hide errors from mmap() and other callers */
return 0;
}
/*
* User mapped kernel pages or huge pages:
* make these pages present to populate the ptes, but
* fall thru' to reset VM_LOCKED--no need to unlock, and
* return nr_pages so these don't get counted against task's
* locked limit. huge pages are already counted against
* locked vm limit.
*/
make_pages_present(start, end);
no_mlock:
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
return nr_pages; /* error or pages NOT mlocked */
}
/*
* munlock_vma_pages_range() - munlock all pages in the vma range.'
* @vma - vma containing range to be munlock()ed.
@@ -303,7 +252,7 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
*
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
* munlock is a no-op. However, for some special vmas, we go ahead and
* populate the ptes via make_pages_present().
* populate the ptes.
*
* For vmas that pass the filters, merge/split as appropriate.
*/