powerpc/mpc83xx: Power Management support

Basic PM support for 83xx.  Standby is implemented as sleep.
Suspend-to-RAM is implemented as "deep sleep" (with the processor
turned off) on 831x.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
This commit is contained in:
Scott Wood
2007-10-09 12:37:13 -05:00
committed by Kumar Gala
parent 7e72063c9a
commit d49747bdfb
8 changed files with 1005 additions and 1 deletions

View File

@ -22,6 +22,7 @@
#include <linux/device.h>
#include <linux/bootmem.h>
#include <linux/spinlock.h>
#include <linux/fsl_devices.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/prom.h>
@ -889,8 +890,78 @@ unsigned int ipic_get_irq(void)
return irq_linear_revmap(primary_ipic->irqhost, irq);
}
#ifdef CONFIG_PM
static struct {
u32 sicfr;
u32 siprr[2];
u32 simsr[2];
u32 sicnr;
u32 smprr[2];
u32 semsr;
u32 secnr;
u32 sermr;
u32 sercr;
} ipic_saved_state;
static int ipic_suspend(struct sys_device *sdev, pm_message_t state)
{
struct ipic *ipic = primary_ipic;
ipic_saved_state.sicfr = ipic_read(ipic->regs, IPIC_SICFR);
ipic_saved_state.siprr[0] = ipic_read(ipic->regs, IPIC_SIPRR_A);
ipic_saved_state.siprr[1] = ipic_read(ipic->regs, IPIC_SIPRR_D);
ipic_saved_state.simsr[0] = ipic_read(ipic->regs, IPIC_SIMSR_H);
ipic_saved_state.simsr[1] = ipic_read(ipic->regs, IPIC_SIMSR_L);
ipic_saved_state.sicnr = ipic_read(ipic->regs, IPIC_SICNR);
ipic_saved_state.smprr[0] = ipic_read(ipic->regs, IPIC_SMPRR_A);
ipic_saved_state.smprr[1] = ipic_read(ipic->regs, IPIC_SMPRR_B);
ipic_saved_state.semsr = ipic_read(ipic->regs, IPIC_SEMSR);
ipic_saved_state.secnr = ipic_read(ipic->regs, IPIC_SECNR);
ipic_saved_state.sermr = ipic_read(ipic->regs, IPIC_SERMR);
ipic_saved_state.sercr = ipic_read(ipic->regs, IPIC_SERCR);
if (fsl_deep_sleep()) {
/* In deep sleep, make sure there can be no
* pending interrupts, as this can cause
* problems on 831x.
*/
ipic_write(ipic->regs, IPIC_SIMSR_H, 0);
ipic_write(ipic->regs, IPIC_SIMSR_L, 0);
ipic_write(ipic->regs, IPIC_SEMSR, 0);
ipic_write(ipic->regs, IPIC_SERMR, 0);
}
return 0;
}
static int ipic_resume(struct sys_device *sdev)
{
struct ipic *ipic = primary_ipic;
ipic_write(ipic->regs, IPIC_SICFR, ipic_saved_state.sicfr);
ipic_write(ipic->regs, IPIC_SIPRR_A, ipic_saved_state.siprr[0]);
ipic_write(ipic->regs, IPIC_SIPRR_D, ipic_saved_state.siprr[1]);
ipic_write(ipic->regs, IPIC_SIMSR_H, ipic_saved_state.simsr[0]);
ipic_write(ipic->regs, IPIC_SIMSR_L, ipic_saved_state.simsr[1]);
ipic_write(ipic->regs, IPIC_SICNR, ipic_saved_state.sicnr);
ipic_write(ipic->regs, IPIC_SMPRR_A, ipic_saved_state.smprr[0]);
ipic_write(ipic->regs, IPIC_SMPRR_B, ipic_saved_state.smprr[1]);
ipic_write(ipic->regs, IPIC_SEMSR, ipic_saved_state.semsr);
ipic_write(ipic->regs, IPIC_SECNR, ipic_saved_state.secnr);
ipic_write(ipic->regs, IPIC_SERMR, ipic_saved_state.sermr);
ipic_write(ipic->regs, IPIC_SERCR, ipic_saved_state.sercr);
return 0;
}
#else
#define ipic_suspend NULL
#define ipic_resume NULL
#endif
static struct sysdev_class ipic_sysclass = {
.name = "ipic",
.suspend = ipic_suspend,
.resume = ipic_resume,
};
static struct sys_device device_ipic = {