sched: Allow for overlapping sched_domain spans

Allow for sched_domain spans that overlap by giving such domains their
own sched_group list instead of sharing the sched_groups amongst
each-other.

This is needed for machines with more than 16 nodes, because
sched_domain_node_span() will generate a node mask from the
16 nearest nodes without regard if these masks have any overlap.

Currently sched_domains have a sched_group that maps to their child
sched_domain span, and since there is no overlap we share the
sched_group between the sched_domains of the various CPUs. If however
there is overlap, we would need to link the sched_group list in
different ways for each cpu, and hence sharing isn't possible.

In order to solve this, allocate private sched_groups for each CPU's
sched_domain but have the sched_groups share a sched_group_power
structure such that we can uniquely track the power.

Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Peter Zijlstra
2011-07-15 10:35:52 +02:00
committed by Ingo Molnar
parent 9c3f75cbd1
commit e3589f6c81
3 changed files with 132 additions and 29 deletions

View File

@ -844,6 +844,7 @@ enum cpu_idle_type {
#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
enum powersavings_balance_level {
POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
@ -894,6 +895,7 @@ static inline int sd_power_saving_flags(void)
}
struct sched_group_power {
atomic_t ref;
/*
* CPU power of this group, SCHED_LOAD_SCALE being max power for a
* single CPU.