Towards the removal of ioatdma_device.version split the initialization
path into distinct versions. This conversion:
1/ moves version specific probe code to version specific routines
2/ removes the need for ioat_device
3/ turns off the ioat1 msi quirk if the device is reinitialized for intx
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The only .c files that utilize these protected prototypes depend on
CONFIG_INTEL_IOATDMA=y, so there is no value gained in providing empty
prototypes.
[ Impact: pure cleanup ]
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* reduce device->common. to dma-> in ioat_dma_{probe,remove,selftest}
* ioat_lookup_chan_by_index to ioat_chan_by_index
* multi-line function definitions
* ioat_desc_sw.async_tx to ioat_desc_sw.txd
* desc->txd. to tx-> in cleanup routine
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The driver currently duplicates much of what these routines offer, so
just use the common code. For example ->irq_mode tracks what interrupt
mode was initialized, which duplicates the ->msix_enabled and
->msi_enabled handling in pcim_release.
This also adds a check to the return value of dma_async_device_register,
which can fail.
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Some of these defines may be useful outside of dma.c and the header is
private so there are no namespace pollution concerns.
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that the resources to handle stripe_head operations are allocated
percpu it is possible for raid5d to distribute stripe handling over
multiple cores. This conversion also adds a call to cond_resched() in
the non-multicore case to prevent one core from getting monopolized for
raid operations.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
1/ Use STRIPE_OP_BIOFILL to offload completion of read requests to
raid_run_ops
2/ Implement a handler for sh->reconstruct_state similar to the raid5 case
(adds handling of Q parity)
3/ Prevent handle_parity_checks6 from running concurrently with 'compute'
operations
4/ Hook up raid_run_ops
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
[ Based on an original patch by Yuri Tikhonov ]
Implement the state machine for handling the RAID-6 parities check and
repair functionality. Note that the raid6 case does not need to check
for new failures, like raid5, as it will always writeback the correct
disks. The raid5 case can be updated to check zero_sum_result to avoid
getting confused by new failures rather than retrying the entire check
operation.
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In the synchronous implementation of stripe dirtying we processed a
degraded stripe with one call to handle_stripe_dirtying6(). I.e.
compute the missing blocks from the other drives, then copy in the new
data and reconstruct the parities.
In the asynchronous case we do not perform stripe operations directly.
Instead, operations are scheduled with flags to be later serviced by
raid_run_ops. So, for the degraded case the final reconstruction step
can only be carried out after all blocks have been brought up to date by
being read, or computed. Like the raid5 case schedule_reconstruction()
sets STRIPE_OP_RECONSTRUCT to request a parity generation pass and
through operation chaining can handle compute and reconstruct in a
single raid_run_ops pass.
[dan.j.williams@intel.com: fixup handle_stripe_dirtying6 gating]
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Modify handle_stripe_fill6 to work asynchronously by introducing
fetch_block6 as the raid6 analog of fetch_block5 (schedule compute
operations for missing/out-of-sync disks).
[dan.j.williams@intel.com: compute D+Q in one pass]
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Extend schedule_reconstruction5 for reuse by the raid6 path. Add
support for generating Q and BUG() if a request is made to perform
'prexor'.
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
[ Based on an original patch by Yuri Tikhonov ]
The raid_run_ops routine uses the asynchronous offload api and
the stripe_operations member of a stripe_head to carry out xor+pq+copy
operations asynchronously, outside the lock.
The operations performed by RAID-6 are the same as in the RAID-5 case
except for no support of STRIPE_OP_PREXOR operations. All the others
are supported:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate missing blocks (1 or 2) in the cache from the other blocks
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_RECONSTRUCT
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
The flow is the same as in the RAID-5 case, and reuses some routines, namely:
1/ ops_complete_postxor (renamed to ops_complete_reconstruct)
2/ ops_complete_compute (updated to set up to 2 targets uptodate)
3/ ops_run_check (renamed to ops_run_check_p for xor parity checks)
[neilb@suse.de: fixes to get it to pass mdadm regression suite]
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
ops_complete_compute5 can be reused in the raid6 path if it is updated to
generically handle a second target.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Even though the intent is to extend dmatest with P+Q tests there is
still value in having an always-on sanity check to prevent an
unintentionally broken driver from registering.
This depends on raid6_pq.ko for verification, the side effect being that
PQ capable channels will fail to register when raid6 is disabled.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
iop33x support is not included because that engine is a bit more awkward
to handle in that it can either be in xor mode or pq mode. The
dmaengine/async_tx layers currently only comprehend static capabilities.
Note iop13xx does not support hardware PQ continuation so the driver
must handle the DMA_PREP_CONTINUE flag for operations across > 16
sources. From the comment for dma_maxpq:
/* When an engine does not support native continuation we need 3 extra
* source slots to reuse P and Q with the following coefficients:
* 1/ {00} * P : remove P from Q', but use it as a source for P'
* 2/ {01} * Q : use Q to continue Q' calculation
* 3/ {00} * Q : subtract Q from P' to cancel (2)
*/
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
lockdep correctly identifies a potential recursive locking case for
iop_chan->lock, but in the dependency submission case we expect that the same
class will be acquired for both the parent dependency and the child channel.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Port drivers/md/raid6test/test.c to use the async raid6 recovery
routines. This is meant as a unit test for raid6 acceleration drivers. In
addition to the 16-drive test case this implements tests for the 4-disk and
5-disk special cases (dma devices can not generically handle less than 2
sources), and adds a test for the D+Q case.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Test raid6 p+q operations with a simple "always multiply by 1" q
calculation to fit into dmatest's current destination verification
scheme.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
async_raid6_2data_recov() recovers two data disk failures
async_raid6_datap_recov() recovers a data disk and the P disk
These routines are a port of the synchronous versions found in
drivers/md/raid6recov.c. The primary difference is breaking out the xor
operations into separate calls to async_xor. Two helper routines are
introduced to perform scalar multiplication where needed.
async_sum_product() multiplies two sources by scalar coefficients and
then sums (xor) the result. async_mult() simply multiplies a single
source by a scalar.
This implemention also includes, in contrast to the original
synchronous-only code, special case handling for the 4-disk and 5-disk
array cases. In these situations the default N-disk algorithm will
present 0-source or 1-source operations to dma devices. To cover for
dma devices where the minimum source count is 2 we implement 4-disk and
5-disk handling in the recovery code.
[ Impact: asynchronous raid6 recovery routines for 2data and datap cases ]
Cc: Yuri Tikhonov <yur@emcraft.com>
Cc: Ilya Yanok <yanok@emcraft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We currently walk the parent chain when waiting for a given tx to
complete however this walk may race with the driver cleanup routine.
The routines in async_raid6_recov.c may fall back to the synchronous
path at any point so we need to be prepared to call async_tx_quiesce()
(which calls dma_wait_for_async_tx). To remove the ->parent walk we
guarantee that every time a dependency is attached ->issue_pending() is
invoked, then we can simply poll the initial descriptor until
completion.
This also allows for a lighter weight 'issue pending' implementation as
there is no longer a requirement to iterate through all the channels'
->issue_pending() routines as long as operations have been submitted in
an ordered chain. async_tx_issue_pending() is added for this case.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Replace the flat zero_sum_result with a collection of flags to contain
the P (xor) zero-sum result, and the soon to be utilized Q (raid6 reed
solomon syndrome) zero-sum result. Use the SUM_CHECK_ namespace instead
of DMA_ since these flags will be used on non-dma-zero-sum enabled
platforms.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Use percpu memory rather than stack for storing the buffer lists used in
parity calculations. Include space for dma address conversions and pass
that to async_tx via the async_submit_ctl.scribble pointer.
[ Impact: move memory pressure from stack to heap ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for asynchronous handling of raid6 operations move the
spare page to a percpu allocation to allow multiple simultaneous
synchronous raid6 recovery operations.
Make this allocation cpu hotplug aware to maximize allocation
efficiency.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When first created the ioat driver was the only inhabitant of
drivers/dma/. Now, it is the only multi-file (more than a .c and a .h)
driver in the directory. Moving it to an ioat/ subdirectory allows the
naming convention to be cleaned up, and allows for future splitting of
the source files by hardware version (v1, v2, and v3).
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch for at_hdmac adds the slave transfers capability to the Atmel DMA
controller available on some AT91 SOCs. This allow peripheral to memory and
memory to peripheral transfers with hardware handshaking.
Slave structure for controller specific information is passed through channel
private data. This at_dma_slave structure is defined in at_hdmac.h header file
and relative hardware definition are moved to this file from at_hdmac_regs.h.
Doing this we allow the channel configuration from platform definition code.
This work is intensively based on dw_dmac and several slave implementations.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This AHB DMA Controller (aka HDMA or DMAC on AT91 systems) is availlable on
at91sam9rl chip. It will be used on other products in the future.
This first release covers only the memory-to-memory tranfer type. This is the
only tranfer type supported by this chip. On other products, it will be used
also for peripheral DMA transfer (slave API support to come).
I used dmatest client without problem in different configurations to test it.
Full documentation for this controller can be found in the SAM9RL datasheet:
http://www.atmel.com/dyn/products/product_card.asp?part_id=4243
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The dmatest usually waits for the killing of its kthreads to stop
running tests. This patch adds a parameter that sets a maximum
number of test iterations.
This feature is quite interesting for debugging when you set a lot of
traces in your dmaengine controller driver.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Cc: Haavard Skinnemoen <haavard.skinnemoen@atmel.com>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add missing call to safe_put_page from stop() by unifying open coded
raid5_conf_t de-allocation under free_conf().
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
On HIGHMEM64G systems dma_addr_t is known to be larger than (void *)
which precludes async_xor from performing dma address conversions by
reusing the input parameter address list. However, other parts of the
dmaengine infrastructure do not suffer this constraint, so the
HIGHMEM64G restriction can be down-levelled.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This reverts commit 9e9f46c44e.
Quoting from the commit message:
"At this point, it seems to solve more problems than it causes, so let's
try using it by default. It's an easy revert if it ends up causing
trouble."
And guess what? The _CRS code causes trouble.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.infradead.org/battery-2.6:
da9030_battery: Fix race between event handler and monitor
Add MAX17040 Fuel Gauge driver
w1: ds2760_battery: add support for sleep mode feature
w1: ds2760: add support for EEPROM read and write
ds2760_battery: cleanups in ds2760_battery_probe()
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
another race fix in jfs_check_acl()
Get "no acls for this inode" right, fix shmem breakage
inline functions left without protection of ifdef (acl)
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit-current:
audit: inode watches depend on CONFIG_AUDIT not CONFIG_AUDIT_SYSCALL
Even though one cannot make use of the audit watch code without
CONFIG_AUDIT_SYSCALL the spaghetti nature of the audit code means that
the audit rule filtering requires that it at least be compiled.
Thus build the audit_watch code when we build auditfilter like it was
before cfcad62c74
Clearly this is a point of potential future cleanup..
Reported-by: Frans Pop <elendil@planet.nl>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
commit 64d1304a64 (futex: setup writeable mapping for futex ops which
modify user space data) did address only half of the problem of write
access faults.
The patch was made on two wrong assumptions:
1) access_ok(VERIFY_WRITE,...) would actually check write access.
On x86 it does _NOT_. It's a pure address range check.
2) a RW mapped region can not go away under us.
That's wrong as well. Nobody can prevent another thread to call
mprotect(PROT_READ) on that region where the futex resides. If that
call hits between the get_user_pages_fast() verification and the
actual write access in the atomic region we are toast again.
The solution is to not rely on access_ok and get_user() for any write
access related fault on private and shared futexes. Instead we need to
fault it in with verification of write access.
There is no generic non destructive write mechanism which would fault
the user page in trough a #PF, but as we already know that we will
fault we can as well call get_user_pages() directly and avoid the #PF
overhead.
If get_user_pages() returns -EFAULT we know that we can not fix it
anymore and need to bail out to user space.
Remove a bunch of confusing comments on this issue as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
SLUB uses higher order allocations by default but falls back to small
orders under memory pressure. Make sure the GFP mask used in the initial
allocation doesn't include __GFP_NOFAIL.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Traditionally, we never failed small orders (even regardless of any
__GFP_NOFAIL flags), and slab will allocate order-1 allocations even for
small allocations that could fit in a single page (in order to avoid
excessive fragmentation).
Maybe we should remove this warning entirely, but before making that
judgement, at least limit it to bigger allocations.
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus:
Staging: octeon-ethernet: Fix race freeing transmit buffers.
Staging: octeon-ethernet: Convert to use net_device_ops.
MIPS: Cavium: Add CPU hotplugging code.
MIPS: SMP: Allow suspend and hibernation if CPU hotplug is available
MIPS: Add arch generic CPU hotplug
DMA: txx9dmac: use dma_unmap_single if DMA_COMPL_{SRC,DEST}_UNMAP_SINGLE set
MIPS: Sibyte: Fix build error if CONFIG_SERIAL_SB1250_DUART is undefined.
MIPS: MIPSsim: Fix build error if MSC01E_INT_BASE is undefined.
MIPS: Hibernation: Remove SMP TLB and cacheflushing code.
MIPS: Build fix - include <linux/smp.h> into all smp_processor_id() users.
MIPS: bug.h Build fix - include <linux/compiler.h>.