/* * KVM paravirt_ops implementation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar * Copyright IBM Corporation, 2007 * Authors: Anthony Liguori */ #include #include #include #include #include #include #include #include #include #include #include #define MMU_QUEUE_SIZE 1024 static int kvmapf = 1; static int parse_no_kvmapf(char *arg) { kvmapf = 0; return 0; } early_param("no-kvmapf", parse_no_kvmapf); struct kvm_para_state { u8 mmu_queue[MMU_QUEUE_SIZE]; int mmu_queue_len; }; static DEFINE_PER_CPU(struct kvm_para_state, para_state); static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); static struct kvm_para_state *kvm_para_state(void) { return &per_cpu(para_state, raw_smp_processor_id()); } /* * No need for any "IO delay" on KVM */ static void kvm_io_delay(void) { } static void kvm_mmu_op(void *buffer, unsigned len) { int r; unsigned long a1, a2; do { a1 = __pa(buffer); a2 = 0; /* on i386 __pa() always returns <4G */ r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2); buffer += r; len -= r; } while (len); } static void mmu_queue_flush(struct kvm_para_state *state) { if (state->mmu_queue_len) { kvm_mmu_op(state->mmu_queue, state->mmu_queue_len); state->mmu_queue_len = 0; } } static void kvm_deferred_mmu_op(void *buffer, int len) { struct kvm_para_state *state = kvm_para_state(); if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) { kvm_mmu_op(buffer, len); return; } if (state->mmu_queue_len + len > sizeof state->mmu_queue) mmu_queue_flush(state); memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len); state->mmu_queue_len += len; } static void kvm_mmu_write(void *dest, u64 val) { __u64 pte_phys; struct kvm_mmu_op_write_pte wpte; #ifdef CONFIG_HIGHPTE struct page *page; unsigned long dst = (unsigned long) dest; page = kmap_atomic_to_page(dest); pte_phys = page_to_pfn(page); pte_phys <<= PAGE_SHIFT; pte_phys += (dst & ~(PAGE_MASK)); #else pte_phys = (unsigned long)__pa(dest); #endif wpte.header.op = KVM_MMU_OP_WRITE_PTE; wpte.pte_val = val; wpte.pte_phys = pte_phys; kvm_deferred_mmu_op(&wpte, sizeof wpte); } /* * We only need to hook operations that are MMU writes. We hook these so that * we can use lazy MMU mode to batch these operations. We could probably * improve the performance of the host code if we used some of the information * here to simplify processing of batched writes. */ static void kvm_set_pte(pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd) { kvm_mmu_write(pmdp, pmd_val(pmd)); } #if PAGETABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte) { kvm_mmu_write(ptep, pte_val(pte)); } static void kvm_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { kvm_mmu_write(ptep, 0); } static void kvm_pmd_clear(pmd_t *pmdp) { kvm_mmu_write(pmdp, 0); } #endif static void kvm_set_pud(pud_t *pudp, pud_t pud) { kvm_mmu_write(pudp, pud_val(pud)); } #if PAGETABLE_LEVELS == 4 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd) { kvm_mmu_write(pgdp, pgd_val(pgd)); } #endif #endif /* PAGETABLE_LEVELS >= 3 */ static void kvm_flush_tlb(void) { struct kvm_mmu_op_flush_tlb ftlb = { .header.op = KVM_MMU_OP_FLUSH_TLB, }; kvm_deferred_mmu_op(&ftlb, sizeof ftlb); } static void kvm_release_pt(unsigned long pfn) { struct kvm_mmu_op_release_pt rpt = { .header.op = KVM_MMU_OP_RELEASE_PT, .pt_phys = (u64)pfn << PAGE_SHIFT, }; kvm_mmu_op(&rpt, sizeof rpt); } static void kvm_enter_lazy_mmu(void) { paravirt_enter_lazy_mmu(); } static void kvm_leave_lazy_mmu(void) { struct kvm_para_state *state = kvm_para_state(); mmu_queue_flush(state); paravirt_leave_lazy_mmu(); } static void __init paravirt_ops_setup(void) { pv_info.name = "KVM"; pv_info.paravirt_enabled = 1; if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) pv_cpu_ops.io_delay = kvm_io_delay; if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) { pv_mmu_ops.set_pte = kvm_set_pte; pv_mmu_ops.set_pte_at = kvm_set_pte_at; pv_mmu_ops.set_pmd = kvm_set_pmd; #if PAGETABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic; pv_mmu_ops.pte_clear = kvm_pte_clear; pv_mmu_ops.pmd_clear = kvm_pmd_clear; #endif pv_mmu_ops.set_pud = kvm_set_pud; #if PAGETABLE_LEVELS == 4 pv_mmu_ops.set_pgd = kvm_set_pgd; #endif #endif pv_mmu_ops.flush_tlb_user = kvm_flush_tlb; pv_mmu_ops.release_pte = kvm_release_pt; pv_mmu_ops.release_pmd = kvm_release_pt; pv_mmu_ops.release_pud = kvm_release_pt; pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu; pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu; } #ifdef CONFIG_X86_IO_APIC no_timer_check = 1; #endif } void __cpuinit kvm_guest_cpu_init(void) { if (!kvm_para_available()) return; if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) { u64 pa = __pa(&__get_cpu_var(apf_reason)); wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED); __get_cpu_var(apf_reason).enabled = 1; printk(KERN_INFO"KVM setup async PF for cpu %d\n", smp_processor_id()); } } static void kvm_pv_disable_apf(void *unused) { if (!__get_cpu_var(apf_reason).enabled) return; wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); __get_cpu_var(apf_reason).enabled = 0; printk(KERN_INFO"Unregister pv shared memory for cpu %d\n", smp_processor_id()); } static int kvm_pv_reboot_notify(struct notifier_block *nb, unsigned long code, void *unused) { if (code == SYS_RESTART) on_each_cpu(kvm_pv_disable_apf, NULL, 1); return NOTIFY_DONE; } static struct notifier_block kvm_pv_reboot_nb = { .notifier_call = kvm_pv_reboot_notify, }; #ifdef CONFIG_SMP static void __init kvm_smp_prepare_boot_cpu(void) { WARN_ON(kvm_register_clock("primary cpu clock")); kvm_guest_cpu_init(); native_smp_prepare_boot_cpu(); } static void kvm_guest_cpu_online(void *dummy) { kvm_guest_cpu_init(); } static void kvm_guest_cpu_offline(void *dummy) { kvm_pv_disable_apf(NULL); } static int __cpuinit kvm_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int cpu = (unsigned long)hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: case CPU_ONLINE_FROZEN: smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1); break; default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata kvm_cpu_notifier = { .notifier_call = kvm_cpu_notify, }; #endif void __init kvm_guest_init(void) { if (!kvm_para_available()) return; paravirt_ops_setup(); register_reboot_notifier(&kvm_pv_reboot_nb); #ifdef CONFIG_SMP smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; register_cpu_notifier(&kvm_cpu_notifier); #else kvm_guest_cpu_init(); #endif }