linux-kernel-test/arch/powerpc/mm/mem.c
Michael Ellerman d7a5b2ffa1 [PATCH] powerpc: Always panic if lmb_alloc() fails
Currently most callers of lmb_alloc() don't check if it worked or not, if it
ever does weird bad things will probably happen. The few callers who do check
just panic or BUG_ON.

So make lmb_alloc() panic internally, to catch bugs at the source. The few
callers who did check the result no longer need to.

The only caller that did anything interesting with the return result was
careful_allocation(). For it we create __lmb_alloc_base() which _doesn't_ panic
automatically, a little messy, but passable.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-07 22:38:34 +11:00

543 lines
14 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/sections.h>
#include <asm/vdso.h>
#include "mmu_decl.h"
#ifndef CPU_FTR_COHERENT_ICACHE
#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
#define CPU_FTR_NOEXECUTE 0
#endif
int init_bootmem_done;
int mem_init_done;
unsigned long memory_limit;
extern void hash_preload(struct mm_struct *mm, unsigned long ea,
unsigned long access, unsigned long trap);
/*
* This is called by /dev/mem to know if a given address has to
* be mapped non-cacheable or not
*/
int page_is_ram(unsigned long pfn)
{
unsigned long paddr = (pfn << PAGE_SHIFT);
#ifndef CONFIG_PPC64 /* XXX for now */
return paddr < __pa(high_memory);
#else
int i;
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base;
base = lmb.memory.region[i].base;
if ((paddr >= base) &&
(paddr < (base + lmb.memory.region[i].size))) {
return 1;
}
}
return 0;
#endif
}
EXPORT_SYMBOL(page_is_ram);
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
if (!page_is_ram(pfn))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#ifdef CONFIG_MEMORY_HOTPLUG
void online_page(struct page *page)
{
ClearPageReserved(page);
set_page_count(page, 0);
free_cold_page(page);
totalram_pages++;
num_physpages++;
}
int __devinit add_memory(u64 start, u64 size)
{
struct pglist_data *pgdata;
struct zone *zone;
int nid;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
nid = hot_add_scn_to_nid(start);
pgdata = NODE_DATA(nid);
start = __va(start);
create_section_mapping(start, start + size);
/* this should work for most non-highmem platforms */
zone = pgdata->node_zones;
return __add_pages(zone, start_pfn, nr_pages);
return 0;
}
/*
* First pass at this code will check to determine if the remove
* request is within the RMO. Do not allow removal within the RMO.
*/
int __devinit remove_memory(u64 start, u64 size)
{
struct zone *zone;
unsigned long start_pfn, end_pfn, nr_pages;
start_pfn = start >> PAGE_SHIFT;
nr_pages = size >> PAGE_SHIFT;
end_pfn = start_pfn + nr_pages;
printk("%s(): Attempting to remove memoy in range "
"%lx to %lx\n", __func__, start, start+size);
/*
* check for range within RMO
*/
zone = page_zone(pfn_to_page(start_pfn));
printk("%s(): memory will be removed from "
"the %s zone\n", __func__, zone->name);
/*
* not handling removing memory ranges that
* overlap multiple zones yet
*/
if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
goto overlap;
/* make sure it is NOT in RMO */
if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
printk("%s(): range to be removed must NOT be in RMO!\n",
__func__);
goto in_rmo;
}
return __remove_pages(zone, start_pfn, nr_pages);
overlap:
printk("%s(): memory range to be removed overlaps "
"multiple zones!!!\n", __func__);
in_rmo:
return -1;
}
#endif /* CONFIG_MEMORY_HOTPLUG */
void show_mem(void)
{
unsigned long total = 0, reserved = 0;
unsigned long shared = 0, cached = 0;
unsigned long highmem = 0;
struct page *page;
pg_data_t *pgdat;
unsigned long i;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_pgdat(pgdat) {
unsigned long flags;
pgdat_resize_lock(pgdat, &flags);
for (i = 0; i < pgdat->node_spanned_pages; i++) {
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pgdat_page_nr(pgdat, i);
total++;
if (PageHighMem(page))
highmem++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
pgdat_resize_unlock(pgdat, &flags);
}
printk("%ld pages of RAM\n", total);
#ifdef CONFIG_HIGHMEM
printk("%ld pages of HIGHMEM\n", highmem);
#endif
printk("%ld reserved pages\n", reserved);
printk("%ld pages shared\n", shared);
printk("%ld pages swap cached\n", cached);
}
/*
* Initialize the bootmem system and give it all the memory we
* have available. If we are using highmem, we only put the
* lowmem into the bootmem system.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
unsigned long i;
unsigned long start, bootmap_pages;
unsigned long total_pages;
int boot_mapsize;
max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
total_pages = total_lowmem >> PAGE_SHIFT;
#endif
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
/* Add all physical memory to the bootmem map, mark each area
* present.
*/
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long base = lmb.memory.region[i].base;
unsigned long size = lmb_size_bytes(&lmb.memory, i);
#ifdef CONFIG_HIGHMEM
if (base >= total_lowmem)
continue;
if (base + size > total_lowmem)
size = total_lowmem - base;
#endif
free_bootmem(base, size);
}
/* reserve the sections we're already using */
for (i = 0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i));
/* XXX need to clip this if using highmem? */
for (i = 0; i < lmb.memory.cnt; i++)
memory_present(0, lmb_start_pfn(&lmb.memory, i),
lmb_end_pfn(&lmb.memory, i));
init_bootmem_done = 1;
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long total_ram = lmb_phys_mem_size();
unsigned long top_of_ram = lmb_end_of_DRAM();
#ifdef CONFIG_HIGHMEM
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#else
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#endif /* CONFIG_HIGHMEM */
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
num_physpages = lmb.memory.size >> PAGE_SHIFT;
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %x\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = max_pfn;
totalram_pages += free_all_bootmem();
#endif
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pgdat_page_nr(pgdat, i);
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
#ifdef CONFIG_HIGHMEM
{
unsigned long pfn, highmem_mapnr;
highmem_mapnr = total_lowmem >> PAGE_SHIFT;
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
struct page *page = pfn_to_page(pfn);
ClearPageReserved(page);
set_page_count(page, 1);
__free_page(page);
totalhigh_pages++;
}
totalram_pages += totalhigh_pages;
printk(KERN_INFO "High memory: %luk\n",
totalhigh_pages << (PAGE_SHIFT-10));
}
#endif /* CONFIG_HIGHMEM */
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
mem_init_done = 1;
/* Initialize the vDSO */
vdso_init();
}
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &page->flags))
clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);
void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_BOOKE
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
__flush_dcache_icache(start);
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
/* On 8xx there is no need to kmap since highmem is not supported */
__flush_dcache_icache(page_address(page));
#else
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif
}
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
/*
* We shouldnt have to do this, but some versions of glibc
* require it (ld.so assumes zero filled pages are icache clean)
* - Anton
*/
flush_dcache_page(pg);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
/*
* We should be able to use the following optimisation, however
* there are two problems.
* Firstly a bug in some versions of binutils meant PLT sections
* were not marked executable.
* Secondly the first word in the GOT section is blrl, used
* to establish the GOT address. Until recently the GOT was
* not marked executable.
* - Anton
*/
#if 0
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
return;
#endif
flush_dcache_page(pg);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
kunmap(page);
}
EXPORT_SYMBOL(flush_icache_user_range);
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the pte lock held.
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
pte_t pte)
{
#ifdef CONFIG_PPC_STD_MMU
unsigned long access = 0, trap;
#endif
unsigned long pfn = pte_pfn(pte);
/* handle i-cache coherency */
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
!cpu_has_feature(CPU_FTR_NOEXECUTE) &&
pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page)
&& !test_bit(PG_arch_1, &page->flags)) {
if (vma->vm_mm == current->active_mm) {
#ifdef CONFIG_8xx
/* On 8xx, cache control instructions (particularly
* "dcbst" from flush_dcache_icache) fault as write
* operation if there is an unpopulated TLB entry
* for the address in question. To workaround that,
* we invalidate the TLB here, thus avoiding dcbst
* misbehaviour.
*/
_tlbie(address);
#endif
__flush_dcache_icache((void *) address);
} else
flush_dcache_icache_page(page);
set_bit(PG_arch_1, &page->flags);
}
}
#ifdef CONFIG_PPC_STD_MMU
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(pte) || address >= TASK_SIZE)
return;
/* We try to figure out if we are coming from an instruction
* access fault and pass that down to __hash_page so we avoid
* double-faulting on execution of fresh text. We have to test
* for regs NULL since init will get here first thing at boot
*
* We also avoid filling the hash if not coming from a fault
*/
if (current->thread.regs == NULL)
return;
trap = TRAP(current->thread.regs);
if (trap == 0x400)
access |= _PAGE_EXEC;
else if (trap != 0x300)
return;
hash_preload(vma->vm_mm, address, access, trap);
#endif /* CONFIG_PPC_STD_MMU */
}