linux-kernel-test/tools/perf/builtin-stat.c
Stephane Eranian 410136f5dd tools/perf/stat: Add event unit and scale support
This patch adds perf stat support for handling event units and
scales as exported by the kernel.

The kernel can export PMU events actual unit and scaling factor
via sysfs:

  $ ls -1 /sys/devices/power/events/energy-*
  /sys/devices/power/events/energy-cores
  /sys/devices/power/events/energy-cores.scale
  /sys/devices/power/events/energy-cores.unit
  /sys/devices/power/events/energy-pkg
  /sys/devices/power/events/energy-pkg.scale
  /sys/devices/power/events/energy-pkg.unit
  $ cat /sys/devices/power/events/energy-cores.scale
  2.3283064365386962890625e-10
  $ cat cat /sys/devices/power/events/energy-cores.unit
  Joules

This patch modifies the pmu event alias code to check
for the presence of the .unit and .scale files to load
the corresponding values. They are then used by perf stat
transparently:

   # perf stat -a -e power/energy-pkg/,power/energy-cores/,cycles -I 1000 sleep 1000
   #          time             counts   unit events
       1.000214717               3.07 Joules power/energy-pkg/         [100.00%]
       1.000214717               0.53 Joules power/energy-cores/
       1.000214717           12965028        cycles                    [100.00%]
       2.000749289               3.01 Joules power/energy-pkg/
       2.000749289               0.52 Joules power/energy-cores/
       2.000749289           15817043        cycles

When the event does not have an explicit unit exported by
the kernel, nothing is printed. In csv output mode, there
will be an empty field.

Special thanks to Jiri for providing the supporting code
in the parser to trigger reading of the scale and unit files.

Signed-off-by: Stephane Eranian <eranian@google.com>
Reviewed-by: Jiri Olsa <jolsa@redhat.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: zheng.z.yan@intel.com
Cc: bp@alien8.de
Cc: maria.n.dimakopoulou@gmail.com
Cc: acme@redhat.com
Link: http://lkml.kernel.org/r/1384275531-10892-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-27 11:16:39 +01:00

1812 lines
47 KiB
C

/*
* builtin-stat.c
*
* Builtin stat command: Give a precise performance counters summary
* overview about any workload, CPU or specific PID.
*
* Sample output:
$ perf stat ./hackbench 10
Time: 0.118
Performance counter stats for './hackbench 10':
1708.761321 task-clock # 11.037 CPUs utilized
41,190 context-switches # 0.024 M/sec
6,735 CPU-migrations # 0.004 M/sec
17,318 page-faults # 0.010 M/sec
5,205,202,243 cycles # 3.046 GHz
3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle
1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle
2,603,501,247 instructions # 0.50 insns per cycle
# 1.48 stalled cycles per insn
484,357,498 branches # 283.455 M/sec
6,388,934 branch-misses # 1.32% of all branches
0.154822978 seconds time elapsed
*
* Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
* Jaswinder Singh Rajput <jaswinder@kernel.org>
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "perf.h"
#include "builtin.h"
#include "util/util.h"
#include "util/parse-options.h"
#include "util/parse-events.h"
#include "util/pmu.h"
#include "util/event.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/debug.h"
#include "util/color.h"
#include "util/stat.h"
#include "util/header.h"
#include "util/cpumap.h"
#include "util/thread.h"
#include "util/thread_map.h"
#include <stdlib.h>
#include <sys/prctl.h>
#include <locale.h>
#define DEFAULT_SEPARATOR " "
#define CNTR_NOT_SUPPORTED "<not supported>"
#define CNTR_NOT_COUNTED "<not counted>"
static void print_stat(int argc, const char **argv);
static void print_counter_aggr(struct perf_evsel *counter, char *prefix);
static void print_counter(struct perf_evsel *counter, char *prefix);
static void print_aggr(char *prefix);
/* Default events used for perf stat -T */
static const char * const transaction_attrs[] = {
"task-clock",
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/,"
"cpu/el-start/,"
"cpu/cycles-ct/"
"}"
};
/* More limited version when the CPU does not have all events. */
static const char * const transaction_limited_attrs[] = {
"task-clock",
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/"
"}"
};
/* must match transaction_attrs and the beginning limited_attrs */
enum {
T_TASK_CLOCK,
T_INSTRUCTIONS,
T_CYCLES,
T_CYCLES_IN_TX,
T_TRANSACTION_START,
T_ELISION_START,
T_CYCLES_IN_TX_CP,
};
static struct perf_evlist *evsel_list;
static struct target target = {
.uid = UINT_MAX,
};
enum aggr_mode {
AGGR_NONE,
AGGR_GLOBAL,
AGGR_SOCKET,
AGGR_CORE,
};
static int run_count = 1;
static bool no_inherit = false;
static bool scale = true;
static enum aggr_mode aggr_mode = AGGR_GLOBAL;
static volatile pid_t child_pid = -1;
static bool null_run = false;
static int detailed_run = 0;
static bool transaction_run;
static bool big_num = true;
static int big_num_opt = -1;
static const char *csv_sep = NULL;
static bool csv_output = false;
static bool group = false;
static FILE *output = NULL;
static const char *pre_cmd = NULL;
static const char *post_cmd = NULL;
static bool sync_run = false;
static unsigned int interval = 0;
static unsigned int initial_delay = 0;
static unsigned int unit_width = 4; /* strlen("unit") */
static bool forever = false;
static struct timespec ref_time;
static struct cpu_map *aggr_map;
static int (*aggr_get_id)(struct cpu_map *m, int cpu);
static volatile int done = 0;
struct perf_stat {
struct stats res_stats[3];
};
static inline void diff_timespec(struct timespec *r, struct timespec *a,
struct timespec *b)
{
r->tv_sec = a->tv_sec - b->tv_sec;
if (a->tv_nsec < b->tv_nsec) {
r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
r->tv_sec--;
} else {
r->tv_nsec = a->tv_nsec - b->tv_nsec ;
}
}
static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel)
{
return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus;
}
static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel)
{
return perf_evsel__cpus(evsel)->nr;
}
static void perf_evsel__reset_stat_priv(struct perf_evsel *evsel)
{
memset(evsel->priv, 0, sizeof(struct perf_stat));
}
static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
{
evsel->priv = zalloc(sizeof(struct perf_stat));
return evsel->priv == NULL ? -ENOMEM : 0;
}
static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
{
free(evsel->priv);
evsel->priv = NULL;
}
static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel)
{
void *addr;
size_t sz;
sz = sizeof(*evsel->counts) +
(perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values));
addr = zalloc(sz);
if (!addr)
return -ENOMEM;
evsel->prev_raw_counts = addr;
return 0;
}
static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
{
free(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
}
static void perf_evlist__free_stats(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__free_stat_priv(evsel);
perf_evsel__free_counts(evsel);
perf_evsel__free_prev_raw_counts(evsel);
}
}
static int perf_evlist__alloc_stats(struct perf_evlist *evlist, bool alloc_raw)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
if (perf_evsel__alloc_stat_priv(evsel) < 0 ||
perf_evsel__alloc_counts(evsel, perf_evsel__nr_cpus(evsel)) < 0 ||
(alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel) < 0))
goto out_free;
}
return 0;
out_free:
perf_evlist__free_stats(evlist);
return -1;
}
static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
static struct stats runtime_cycles_stats[MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_front_stats[MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_back_stats[MAX_NR_CPUS];
static struct stats runtime_branches_stats[MAX_NR_CPUS];
static struct stats runtime_cacherefs_stats[MAX_NR_CPUS];
static struct stats runtime_l1_dcache_stats[MAX_NR_CPUS];
static struct stats runtime_l1_icache_stats[MAX_NR_CPUS];
static struct stats runtime_ll_cache_stats[MAX_NR_CPUS];
static struct stats runtime_itlb_cache_stats[MAX_NR_CPUS];
static struct stats runtime_dtlb_cache_stats[MAX_NR_CPUS];
static struct stats runtime_cycles_in_tx_stats[MAX_NR_CPUS];
static struct stats walltime_nsecs_stats;
static struct stats runtime_transaction_stats[MAX_NR_CPUS];
static struct stats runtime_elision_stats[MAX_NR_CPUS];
static void perf_stat__reset_stats(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__reset_stat_priv(evsel);
perf_evsel__reset_counts(evsel, perf_evsel__nr_cpus(evsel));
}
memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats));
memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats));
memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats));
memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats));
memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats));
memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats));
memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats));
memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats));
memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats));
memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats));
memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats));
memset(runtime_cycles_in_tx_stats, 0,
sizeof(runtime_cycles_in_tx_stats));
memset(runtime_transaction_stats, 0,
sizeof(runtime_transaction_stats));
memset(runtime_elision_stats, 0, sizeof(runtime_elision_stats));
memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
}
static int create_perf_stat_counter(struct perf_evsel *evsel)
{
struct perf_event_attr *attr = &evsel->attr;
if (scale)
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
attr->inherit = !no_inherit;
if (target__has_cpu(&target))
return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
if (!target__has_task(&target) && perf_evsel__is_group_leader(evsel)) {
attr->disabled = 1;
if (!initial_delay)
attr->enable_on_exec = 1;
}
return perf_evsel__open_per_thread(evsel, evsel_list->threads);
}
/*
* Does the counter have nsecs as a unit?
*/
static inline int nsec_counter(struct perf_evsel *evsel)
{
if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
return 1;
return 0;
}
static struct perf_evsel *nth_evsel(int n)
{
static struct perf_evsel **array;
static int array_len;
struct perf_evsel *ev;
int j;
/* Assumes this only called when evsel_list does not change anymore. */
if (!array) {
list_for_each_entry(ev, &evsel_list->entries, node)
array_len++;
array = malloc(array_len * sizeof(void *));
if (!array)
exit(ENOMEM);
j = 0;
list_for_each_entry(ev, &evsel_list->entries, node)
array[j++] = ev;
}
if (n < array_len)
return array[n];
return NULL;
}
/*
* Update various tracking values we maintain to print
* more semantic information such as miss/hit ratios,
* instruction rates, etc:
*/
static void update_shadow_stats(struct perf_evsel *counter, u64 *count)
{
if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK))
update_stats(&runtime_nsecs_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
update_stats(&runtime_cycles_stats[0], count[0]);
else if (transaction_run &&
perf_evsel__cmp(counter, nth_evsel(T_CYCLES_IN_TX)))
update_stats(&runtime_cycles_in_tx_stats[0], count[0]);
else if (transaction_run &&
perf_evsel__cmp(counter, nth_evsel(T_TRANSACTION_START)))
update_stats(&runtime_transaction_stats[0], count[0]);
else if (transaction_run &&
perf_evsel__cmp(counter, nth_evsel(T_ELISION_START)))
update_stats(&runtime_elision_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
update_stats(&runtime_stalled_cycles_front_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
update_stats(&runtime_stalled_cycles_back_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
update_stats(&runtime_branches_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
update_stats(&runtime_cacherefs_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
update_stats(&runtime_l1_dcache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
update_stats(&runtime_l1_icache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
update_stats(&runtime_ll_cache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
update_stats(&runtime_dtlb_cache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
update_stats(&runtime_itlb_cache_stats[0], count[0]);
}
/*
* Read out the results of a single counter:
* aggregate counts across CPUs in system-wide mode
*/
static int read_counter_aggr(struct perf_evsel *counter)
{
struct perf_stat *ps = counter->priv;
u64 *count = counter->counts->aggr.values;
int i;
if (__perf_evsel__read(counter, perf_evsel__nr_cpus(counter),
thread_map__nr(evsel_list->threads), scale) < 0)
return -1;
for (i = 0; i < 3; i++)
update_stats(&ps->res_stats[i], count[i]);
if (verbose) {
fprintf(output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
perf_evsel__name(counter), count[0], count[1], count[2]);
}
/*
* Save the full runtime - to allow normalization during printout:
*/
update_shadow_stats(counter, count);
return 0;
}
/*
* Read out the results of a single counter:
* do not aggregate counts across CPUs in system-wide mode
*/
static int read_counter(struct perf_evsel *counter)
{
u64 *count;
int cpu;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
if (__perf_evsel__read_on_cpu(counter, cpu, 0, scale) < 0)
return -1;
count = counter->counts->cpu[cpu].values;
update_shadow_stats(counter, count);
}
return 0;
}
static void print_interval(void)
{
static int num_print_interval;
struct perf_evsel *counter;
struct perf_stat *ps;
struct timespec ts, rs;
char prefix[64];
if (aggr_mode == AGGR_GLOBAL) {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter_aggr(counter);
}
} else {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter(counter);
}
}
clock_gettime(CLOCK_MONOTONIC, &ts);
diff_timespec(&rs, &ts, &ref_time);
sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep);
if (num_print_interval == 0 && !csv_output) {
switch (aggr_mode) {
case AGGR_SOCKET:
fprintf(output, "# time socket cpus counts %*s events\n", unit_width, "unit");
break;
case AGGR_CORE:
fprintf(output, "# time core cpus counts %*s events\n", unit_width, "unit");
break;
case AGGR_NONE:
fprintf(output, "# time CPU counts %*s events\n", unit_width, "unit");
break;
case AGGR_GLOBAL:
default:
fprintf(output, "# time counts %*s events\n", unit_width, "unit");
}
}
if (++num_print_interval == 25)
num_print_interval = 0;
switch (aggr_mode) {
case AGGR_CORE:
case AGGR_SOCKET:
print_aggr(prefix);
break;
case AGGR_NONE:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter, prefix);
break;
case AGGR_GLOBAL:
default:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter, prefix);
}
fflush(output);
}
static void handle_initial_delay(void)
{
struct perf_evsel *counter;
if (initial_delay) {
const int ncpus = cpu_map__nr(evsel_list->cpus),
nthreads = thread_map__nr(evsel_list->threads);
usleep(initial_delay * 1000);
list_for_each_entry(counter, &evsel_list->entries, node)
perf_evsel__enable(counter, ncpus, nthreads);
}
}
static int __run_perf_stat(int argc, const char **argv)
{
char msg[512];
unsigned long long t0, t1;
struct perf_evsel *counter;
struct timespec ts;
size_t l;
int status = 0;
const bool forks = (argc > 0);
if (interval) {
ts.tv_sec = interval / 1000;
ts.tv_nsec = (interval % 1000) * 1000000;
} else {
ts.tv_sec = 1;
ts.tv_nsec = 0;
}
if (forks) {
if (perf_evlist__prepare_workload(evsel_list, &target, argv,
false, false) < 0) {
perror("failed to prepare workload");
return -1;
}
child_pid = evsel_list->workload.pid;
}
if (group)
perf_evlist__set_leader(evsel_list);
list_for_each_entry(counter, &evsel_list->entries, node) {
if (create_perf_stat_counter(counter) < 0) {
/*
* PPC returns ENXIO for HW counters until 2.6.37
* (behavior changed with commit b0a873e).
*/
if (errno == EINVAL || errno == ENOSYS ||
errno == ENOENT || errno == EOPNOTSUPP ||
errno == ENXIO) {
if (verbose)
ui__warning("%s event is not supported by the kernel.\n",
perf_evsel__name(counter));
counter->supported = false;
continue;
}
perf_evsel__open_strerror(counter, &target,
errno, msg, sizeof(msg));
ui__error("%s\n", msg);
if (child_pid != -1)
kill(child_pid, SIGTERM);
return -1;
}
counter->supported = true;
l = strlen(counter->unit);
if (l > unit_width)
unit_width = l;
}
if (perf_evlist__apply_filters(evsel_list)) {
error("failed to set filter with %d (%s)\n", errno,
strerror(errno));
return -1;
}
/*
* Enable counters and exec the command:
*/
t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
if (forks) {
perf_evlist__start_workload(evsel_list);
handle_initial_delay();
if (interval) {
while (!waitpid(child_pid, &status, WNOHANG)) {
nanosleep(&ts, NULL);
print_interval();
}
}
wait(&status);
if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]);
} else {
handle_initial_delay();
while (!done) {
nanosleep(&ts, NULL);
if (interval)
print_interval();
}
}
t1 = rdclock();
update_stats(&walltime_nsecs_stats, t1 - t0);
if (aggr_mode == AGGR_GLOBAL) {
list_for_each_entry(counter, &evsel_list->entries, node) {
read_counter_aggr(counter);
perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter),
thread_map__nr(evsel_list->threads));
}
} else {
list_for_each_entry(counter, &evsel_list->entries, node) {
read_counter(counter);
perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), 1);
}
}
return WEXITSTATUS(status);
}
static int run_perf_stat(int argc __maybe_unused, const char **argv)
{
int ret;
if (pre_cmd) {
ret = system(pre_cmd);
if (ret)
return ret;
}
if (sync_run)
sync();
ret = __run_perf_stat(argc, argv);
if (ret)
return ret;
if (post_cmd) {
ret = system(post_cmd);
if (ret)
return ret;
}
return ret;
}
static void print_noise_pct(double total, double avg)
{
double pct = rel_stddev_stats(total, avg);
if (csv_output)
fprintf(output, "%s%.2f%%", csv_sep, pct);
else if (pct)
fprintf(output, " ( +-%6.2f%% )", pct);
}
static void print_noise(struct perf_evsel *evsel, double avg)
{
struct perf_stat *ps;
if (run_count == 1)
return;
ps = evsel->priv;
print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
}
static void aggr_printout(struct perf_evsel *evsel, int id, int nr)
{
switch (aggr_mode) {
case AGGR_CORE:
fprintf(output, "S%d-C%*d%s%*d%s",
cpu_map__id_to_socket(id),
csv_output ? 0 : -8,
cpu_map__id_to_cpu(id),
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_SOCKET:
fprintf(output, "S%*d%s%*d%s",
csv_output ? 0 : -5,
id,
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_NONE:
fprintf(output, "CPU%*d%s",
csv_output ? 0 : -4,
perf_evsel__cpus(evsel)->map[id], csv_sep);
break;
case AGGR_GLOBAL:
default:
break;
}
}
static void nsec_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
{
double msecs = avg / 1e6;
const char *fmt_v, *fmt_n;
char name[25];
fmt_v = csv_output ? "%.6f%s" : "%18.6f%s";
fmt_n = csv_output ? "%s" : "%-25s";
aggr_printout(evsel, cpu, nr);
scnprintf(name, sizeof(name), "%s%s",
perf_evsel__name(evsel), csv_output ? "" : " (msec)");
fprintf(output, fmt_v, msecs, csv_sep);
if (csv_output)
fprintf(output, "%s%s", evsel->unit, csv_sep);
else
fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep);
fprintf(output, fmt_n, name);
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output || interval)
return;
if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
fprintf(output, " # %8.3f CPUs utilized ",
avg / avg_stats(&walltime_nsecs_stats));
else
fprintf(output, " ");
}
/* used for get_ratio_color() */
enum grc_type {
GRC_STALLED_CYCLES_FE,
GRC_STALLED_CYCLES_BE,
GRC_CACHE_MISSES,
GRC_MAX_NR
};
static const char *get_ratio_color(enum grc_type type, double ratio)
{
static const double grc_table[GRC_MAX_NR][3] = {
[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
[GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 },
};
const char *color = PERF_COLOR_NORMAL;
if (ratio > grc_table[type][0])
color = PERF_COLOR_RED;
else if (ratio > grc_table[type][1])
color = PERF_COLOR_MAGENTA;
else if (ratio > grc_table[type][2])
color = PERF_COLOR_YELLOW;
return color;
}
static void print_stalled_cycles_frontend(int cpu,
struct perf_evsel *evsel
__maybe_unused, double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " frontend cycles idle ");
}
static void print_stalled_cycles_backend(int cpu,
struct perf_evsel *evsel
__maybe_unused, double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " backend cycles idle ");
}
static void print_branch_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_branches_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all branches ");
}
static void print_l1_dcache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_l1_dcache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all L1-dcache hits ");
}
static void print_l1_icache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_l1_icache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all L1-icache hits ");
}
static void print_dtlb_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_dtlb_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all dTLB cache hits ");
}
static void print_itlb_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_itlb_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all iTLB cache hits ");
}
static void print_ll_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_ll_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all LL-cache hits ");
}
static void abs_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
{
double total, ratio = 0.0, total2;
double sc = evsel->scale;
const char *fmt;
if (csv_output) {
fmt = sc != 1.0 ? "%.2f%s" : "%.0f%s";
} else {
if (big_num)
fmt = sc != 1.0 ? "%'18.2f%s" : "%'18.0f%s";
else
fmt = sc != 1.0 ? "%18.2f%s" : "%18.0f%s";
}
aggr_printout(evsel, cpu, nr);
if (aggr_mode == AGGR_GLOBAL)
cpu = 0;
fprintf(output, fmt, avg, csv_sep);
if (evsel->unit)
fprintf(output, "%-*s%s",
csv_output ? 0 : unit_width,
evsel->unit, csv_sep);
fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel));
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output || interval)
return;
if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total) {
ratio = avg / total;
fprintf(output, " # %5.2f insns per cycle ", ratio);
}
total = avg_stats(&runtime_stalled_cycles_front_stats[cpu]);
total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[cpu]));
if (total && avg) {
ratio = total / avg;
fprintf(output, "\n");
if (aggr_mode == AGGR_NONE)
fprintf(output, " ");
fprintf(output, " # %5.2f stalled cycles per insn", ratio);
}
} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES) &&
runtime_branches_stats[cpu].n != 0) {
print_branch_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_l1_dcache_stats[cpu].n != 0) {
print_l1_dcache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_l1_icache_stats[cpu].n != 0) {
print_l1_icache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_dtlb_cache_stats[cpu].n != 0) {
print_dtlb_cache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_itlb_cache_stats[cpu].n != 0) {
print_itlb_cache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_ll_cache_stats[cpu].n != 0) {
print_ll_cache_misses(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES) &&
runtime_cacherefs_stats[cpu].n != 0) {
total = avg_stats(&runtime_cacherefs_stats[cpu]);
if (total)
ratio = avg * 100 / total;
fprintf(output, " # %8.3f %% of all cache refs ", ratio);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
print_stalled_cycles_frontend(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
print_stalled_cycles_backend(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total) {
ratio = avg / total;
fprintf(output, " # %8.3f GHz ", ratio);
}
} else if (transaction_run &&
perf_evsel__cmp(evsel, nth_evsel(T_CYCLES_IN_TX))) {
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
fprintf(output,
" # %5.2f%% transactional cycles ",
100.0 * (avg / total));
} else if (transaction_run &&
perf_evsel__cmp(evsel, nth_evsel(T_CYCLES_IN_TX_CP))) {
total = avg_stats(&runtime_cycles_stats[cpu]);
total2 = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
if (total2 < avg)
total2 = avg;
if (total)
fprintf(output,
" # %5.2f%% aborted cycles ",
100.0 * ((total2-avg) / total));
} else if (transaction_run &&
perf_evsel__cmp(evsel, nth_evsel(T_TRANSACTION_START)) &&
avg > 0 &&
runtime_cycles_in_tx_stats[cpu].n != 0) {
total = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
if (total)
ratio = total / avg;
fprintf(output, " # %8.0f cycles / transaction ", ratio);
} else if (transaction_run &&
perf_evsel__cmp(evsel, nth_evsel(T_ELISION_START)) &&
avg > 0 &&
runtime_cycles_in_tx_stats[cpu].n != 0) {
total = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
if (total)
ratio = total / avg;
fprintf(output, " # %8.0f cycles / elision ", ratio);
} else if (runtime_nsecs_stats[cpu].n != 0) {
char unit = 'M';
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total)
ratio = 1000.0 * avg / total;
if (ratio < 0.001) {
ratio *= 1000;
unit = 'K';
}
fprintf(output, " # %8.3f %c/sec ", ratio, unit);
} else {
fprintf(output, " ");
}
}
static void print_aggr(char *prefix)
{
struct perf_evsel *counter;
int cpu, cpu2, s, s2, id, nr;
double uval;
u64 ena, run, val;
if (!(aggr_map || aggr_get_id))
return;
for (s = 0; s < aggr_map->nr; s++) {
id = aggr_map->map[s];
list_for_each_entry(counter, &evsel_list->entries, node) {
val = ena = run = 0;
nr = 0;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
cpu2 = perf_evsel__cpus(counter)->map[cpu];
s2 = aggr_get_id(evsel_list->cpus, cpu2);
if (s2 != id)
continue;
val += counter->counts->cpu[cpu].val;
ena += counter->counts->cpu[cpu].ena;
run += counter->counts->cpu[cpu].run;
nr++;
}
if (prefix)
fprintf(output, "%s", prefix);
if (run == 0 || ena == 0) {
aggr_printout(counter, id, nr);
fprintf(output, "%*s%s",
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep);
fprintf(output, "%-*s%s",
csv_output ? 0 : unit_width,
counter->unit, csv_sep);
fprintf(output, "%*s",
csv_output ? 0 : -25,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s",
csv_sep, counter->cgrp->name);
fputc('\n', output);
continue;
}
uval = val * counter->scale;
if (nsec_counter(counter))
nsec_printout(id, nr, counter, uval);
else
abs_printout(id, nr, counter, uval);
if (!csv_output) {
print_noise(counter, 1.0);
if (run != ena)
fprintf(output, " (%.2f%%)",
100.0 * run / ena);
}
fputc('\n', output);
}
}
}
/*
* Print out the results of a single counter:
* aggregated counts in system-wide mode
*/
static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
{
struct perf_stat *ps = counter->priv;
double avg = avg_stats(&ps->res_stats[0]);
int scaled = counter->counts->scaled;
double uval;
if (prefix)
fprintf(output, "%s", prefix);
if (scaled == -1) {
fprintf(output, "%*s%s",
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep);
fprintf(output, "%-*s%s",
csv_output ? 0 : unit_width,
counter->unit, csv_sep);
fprintf(output, "%*s",
csv_output ? 0 : -25,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s", csv_sep, counter->cgrp->name);
fputc('\n', output);
return;
}
uval = avg * counter->scale;
if (nsec_counter(counter))
nsec_printout(-1, 0, counter, uval);
else
abs_printout(-1, 0, counter, uval);
print_noise(counter, avg);
if (csv_output) {
fputc('\n', output);
return;
}
if (scaled) {
double avg_enabled, avg_running;
avg_enabled = avg_stats(&ps->res_stats[1]);
avg_running = avg_stats(&ps->res_stats[2]);
fprintf(output, " [%5.2f%%]", 100 * avg_running / avg_enabled);
}
fprintf(output, "\n");
}
/*
* Print out the results of a single counter:
* does not use aggregated count in system-wide
*/
static void print_counter(struct perf_evsel *counter, char *prefix)
{
u64 ena, run, val;
double uval;
int cpu;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
val = counter->counts->cpu[cpu].val;
ena = counter->counts->cpu[cpu].ena;
run = counter->counts->cpu[cpu].run;
if (prefix)
fprintf(output, "%s", prefix);
if (run == 0 || ena == 0) {
fprintf(output, "CPU%*d%s%*s%s",
csv_output ? 0 : -4,
perf_evsel__cpus(counter)->map[cpu], csv_sep,
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep);
fprintf(output, "%-*s%s",
csv_output ? 0 : unit_width,
counter->unit, csv_sep);
fprintf(output, "%*s",
csv_output ? 0 : -25,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s",
csv_sep, counter->cgrp->name);
fputc('\n', output);
continue;
}
uval = val * counter->scale;
if (nsec_counter(counter))
nsec_printout(cpu, 0, counter, uval);
else
abs_printout(cpu, 0, counter, uval);
if (!csv_output) {
print_noise(counter, 1.0);
if (run != ena)
fprintf(output, " (%.2f%%)",
100.0 * run / ena);
}
fputc('\n', output);
}
}
static void print_stat(int argc, const char **argv)
{
struct perf_evsel *counter;
int i;
fflush(stdout);
if (!csv_output) {
fprintf(output, "\n");
fprintf(output, " Performance counter stats for ");
if (target.system_wide)
fprintf(output, "\'system wide");
else if (target.cpu_list)
fprintf(output, "\'CPU(s) %s", target.cpu_list);
else if (!target__has_task(&target)) {
fprintf(output, "\'%s", argv[0]);
for (i = 1; i < argc; i++)
fprintf(output, " %s", argv[i]);
} else if (target.pid)
fprintf(output, "process id \'%s", target.pid);
else
fprintf(output, "thread id \'%s", target.tid);
fprintf(output, "\'");
if (run_count > 1)
fprintf(output, " (%d runs)", run_count);
fprintf(output, ":\n\n");
}
switch (aggr_mode) {
case AGGR_CORE:
case AGGR_SOCKET:
print_aggr(NULL);
break;
case AGGR_GLOBAL:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter, NULL);
break;
case AGGR_NONE:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter, NULL);
break;
default:
break;
}
if (!csv_output) {
if (!null_run)
fprintf(output, "\n");
fprintf(output, " %17.9f seconds time elapsed",
avg_stats(&walltime_nsecs_stats)/1e9);
if (run_count > 1) {
fprintf(output, " ");
print_noise_pct(stddev_stats(&walltime_nsecs_stats),
avg_stats(&walltime_nsecs_stats));
}
fprintf(output, "\n\n");
}
}
static volatile int signr = -1;
static void skip_signal(int signo)
{
if ((child_pid == -1) || interval)
done = 1;
signr = signo;
/*
* render child_pid harmless
* won't send SIGTERM to a random
* process in case of race condition
* and fast PID recycling
*/
child_pid = -1;
}
static void sig_atexit(void)
{
sigset_t set, oset;
/*
* avoid race condition with SIGCHLD handler
* in skip_signal() which is modifying child_pid
* goal is to avoid send SIGTERM to a random
* process
*/
sigemptyset(&set);
sigaddset(&set, SIGCHLD);
sigprocmask(SIG_BLOCK, &set, &oset);
if (child_pid != -1)
kill(child_pid, SIGTERM);
sigprocmask(SIG_SETMASK, &oset, NULL);
if (signr == -1)
return;
signal(signr, SIG_DFL);
kill(getpid(), signr);
}
static int stat__set_big_num(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
big_num_opt = unset ? 0 : 1;
return 0;
}
static int perf_stat_init_aggr_mode(void)
{
switch (aggr_mode) {
case AGGR_SOCKET:
if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build socket map");
return -1;
}
aggr_get_id = cpu_map__get_socket;
break;
case AGGR_CORE:
if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build core map");
return -1;
}
aggr_get_id = cpu_map__get_core;
break;
case AGGR_NONE:
case AGGR_GLOBAL:
default:
break;
}
return 0;
}
static int setup_events(const char * const *attrs, unsigned len)
{
unsigned i;
for (i = 0; i < len; i++) {
if (parse_events(evsel_list, attrs[i]))
return -1;
}
return 0;
}
/*
* Add default attributes, if there were no attributes specified or
* if -d/--detailed, -d -d or -d -d -d is used:
*/
static int add_default_attributes(void)
{
struct perf_event_attr default_attrs[] = {
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
};
/*
* Detailed stats (-d), covering the L1 and last level data caches:
*/
struct perf_event_attr detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
*/
struct perf_event_attr very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very, very detailed stats (-d -d -d), adding prefetch events:
*/
struct perf_event_attr very_very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/* Set attrs if no event is selected and !null_run: */
if (null_run)
return 0;
if (transaction_run) {
int err;
if (pmu_have_event("cpu", "cycles-ct") &&
pmu_have_event("cpu", "el-start"))
err = setup_events(transaction_attrs,
ARRAY_SIZE(transaction_attrs));
else
err = setup_events(transaction_limited_attrs,
ARRAY_SIZE(transaction_limited_attrs));
if (err < 0) {
fprintf(stderr, "Cannot set up transaction events\n");
return -1;
}
return 0;
}
if (!evsel_list->nr_entries) {
if (perf_evlist__add_default_attrs(evsel_list, default_attrs) < 0)
return -1;
}
/* Detailed events get appended to the event list: */
if (detailed_run < 1)
return 0;
/* Append detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
return -1;
if (detailed_run < 2)
return 0;
/* Append very detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
return -1;
if (detailed_run < 3)
return 0;
/* Append very, very detailed run extra attributes: */
return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
}
int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
{
bool append_file = false;
int output_fd = 0;
const char *output_name = NULL;
const struct option options[] = {
OPT_BOOLEAN('T', "transaction", &transaction_run,
"hardware transaction statistics"),
OPT_CALLBACK('e', "event", &evsel_list, "event",
"event selector. use 'perf list' to list available events",
parse_events_option),
OPT_CALLBACK(0, "filter", &evsel_list, "filter",
"event filter", parse_filter),
OPT_BOOLEAN('i', "no-inherit", &no_inherit,
"child tasks do not inherit counters"),
OPT_STRING('p', "pid", &target.pid, "pid",
"stat events on existing process id"),
OPT_STRING('t', "tid", &target.tid, "tid",
"stat events on existing thread id"),
OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
"system-wide collection from all CPUs"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN('c', "scale", &scale, "scale/normalize counters"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_INTEGER('r', "repeat", &run_count,
"repeat command and print average + stddev (max: 100, forever: 0)"),
OPT_BOOLEAN('n', "null", &null_run,
"null run - dont start any counters"),
OPT_INCR('d', "detailed", &detailed_run,
"detailed run - start a lot of events"),
OPT_BOOLEAN('S', "sync", &sync_run,
"call sync() before starting a run"),
OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
"print large numbers with thousands\' separators",
stat__set_big_num),
OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
"list of cpus to monitor in system-wide"),
OPT_SET_UINT('A', "no-aggr", &aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_STRING('x', "field-separator", &csv_sep, "separator",
"print counts with custom separator"),
OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
"monitor event in cgroup name only", parse_cgroups),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
OPT_INTEGER(0, "log-fd", &output_fd,
"log output to fd, instead of stderr"),
OPT_STRING(0, "pre", &pre_cmd, "command",
"command to run prior to the measured command"),
OPT_STRING(0, "post", &post_cmd, "command",
"command to run after to the measured command"),
OPT_UINTEGER('I', "interval-print", &interval,
"print counts at regular interval in ms (>= 100)"),
OPT_SET_UINT(0, "per-socket", &aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-core", &aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_UINTEGER('D', "delay", &initial_delay,
"ms to wait before starting measurement after program start"),
OPT_END()
};
const char * const stat_usage[] = {
"perf stat [<options>] [<command>]",
NULL
};
int status = -EINVAL, run_idx;
const char *mode;
setlocale(LC_ALL, "");
evsel_list = perf_evlist__new();
if (evsel_list == NULL)
return -ENOMEM;
argc = parse_options(argc, argv, options, stat_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
output = stderr;
if (output_name && strcmp(output_name, "-"))
output = NULL;
if (output_name && output_fd) {
fprintf(stderr, "cannot use both --output and --log-fd\n");
parse_options_usage(stat_usage, options, "o", 1);
parse_options_usage(NULL, options, "log-fd", 0);
goto out;
}
if (output_fd < 0) {
fprintf(stderr, "argument to --log-fd must be a > 0\n");
parse_options_usage(stat_usage, options, "log-fd", 0);
goto out;
}
if (!output) {
struct timespec tm;
mode = append_file ? "a" : "w";
output = fopen(output_name, mode);
if (!output) {
perror("failed to create output file");
return -1;
}
clock_gettime(CLOCK_REALTIME, &tm);
fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
} else if (output_fd > 0) {
mode = append_file ? "a" : "w";
output = fdopen(output_fd, mode);
if (!output) {
perror("Failed opening logfd");
return -errno;
}
}
if (csv_sep) {
csv_output = true;
if (!strcmp(csv_sep, "\\t"))
csv_sep = "\t";
} else
csv_sep = DEFAULT_SEPARATOR;
/*
* let the spreadsheet do the pretty-printing
*/
if (csv_output) {
/* User explicitly passed -B? */
if (big_num_opt == 1) {
fprintf(stderr, "-B option not supported with -x\n");
parse_options_usage(stat_usage, options, "B", 1);
parse_options_usage(NULL, options, "x", 1);
goto out;
} else /* Nope, so disable big number formatting */
big_num = false;
} else if (big_num_opt == 0) /* User passed --no-big-num */
big_num = false;
if (!argc && target__none(&target))
usage_with_options(stat_usage, options);
if (run_count < 0) {
pr_err("Run count must be a positive number\n");
parse_options_usage(stat_usage, options, "r", 1);
goto out;
} else if (run_count == 0) {
forever = true;
run_count = 1;
}
/* no_aggr, cgroup are for system-wide only */
if ((aggr_mode != AGGR_GLOBAL || nr_cgroups) &&
!target__has_cpu(&target)) {
fprintf(stderr, "both cgroup and no-aggregation "
"modes only available in system-wide mode\n");
parse_options_usage(stat_usage, options, "G", 1);
parse_options_usage(NULL, options, "A", 1);
parse_options_usage(NULL, options, "a", 1);
goto out;
}
if (add_default_attributes())
goto out;
target__validate(&target);
if (perf_evlist__create_maps(evsel_list, &target) < 0) {
if (target__has_task(&target)) {
pr_err("Problems finding threads of monitor\n");
parse_options_usage(stat_usage, options, "p", 1);
parse_options_usage(NULL, options, "t", 1);
} else if (target__has_cpu(&target)) {
perror("failed to parse CPUs map");
parse_options_usage(stat_usage, options, "C", 1);
parse_options_usage(NULL, options, "a", 1);
}
goto out;
}
if (interval && interval < 100) {
pr_err("print interval must be >= 100ms\n");
parse_options_usage(stat_usage, options, "I", 1);
goto out_free_maps;
}
if (perf_evlist__alloc_stats(evsel_list, interval))
goto out_free_maps;
if (perf_stat_init_aggr_mode())
goto out_free_maps;
/*
* We dont want to block the signals - that would cause
* child tasks to inherit that and Ctrl-C would not work.
* What we want is for Ctrl-C to work in the exec()-ed
* task, but being ignored by perf stat itself:
*/
atexit(sig_atexit);
if (!forever)
signal(SIGINT, skip_signal);
signal(SIGCHLD, skip_signal);
signal(SIGALRM, skip_signal);
signal(SIGABRT, skip_signal);
status = 0;
for (run_idx = 0; forever || run_idx < run_count; run_idx++) {
if (run_count != 1 && verbose)
fprintf(output, "[ perf stat: executing run #%d ... ]\n",
run_idx + 1);
status = run_perf_stat(argc, argv);
if (forever && status != -1) {
print_stat(argc, argv);
perf_stat__reset_stats(evsel_list);
}
}
if (!forever && status != -1 && !interval)
print_stat(argc, argv);
perf_evlist__free_stats(evsel_list);
out_free_maps:
perf_evlist__delete_maps(evsel_list);
out:
perf_evlist__delete(evsel_list);
return status;
}