linux-kernel-test/kernel/trace/Kconfig
Steven Rostedt 3d0833953e ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.

The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.

Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.

e.g.

  call ftrace  /* 5 bytes */

is replaced with

  jmp 3f  /* jmp is 2 bytes and we jump 3 forward */
3:

When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace.  When it is disabled,
we replace the code back to the jmp.

Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls.  A large batch is allocated at
boot up to get most of the calls there.

Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 20:33:09 +02:00

108 lines
3.2 KiB
Plaintext

#
# Architectures that offer an FTRACE implementation should select HAVE_FTRACE:
#
config HAVE_FTRACE
bool
config TRACER_MAX_TRACE
bool
config TRACING
bool
select DEBUG_FS
config FTRACE
bool "Kernel Function Tracer"
depends on DEBUG_KERNEL && HAVE_FTRACE
select FRAME_POINTER
select TRACING
select CONTEXT_SWITCH_TRACER
help
Enable the kernel to trace every kernel function. This is done
by using a compiler feature to insert a small, 5-byte No-Operation
instruction to the beginning of every kernel function, which NOP
sequence is then dynamically patched into a tracer call when
tracing is enabled by the administrator. If it's runtime disabled
(the bootup default), then the overhead of the instructions is very
small and not measurable even in micro-benchmarks.
config IRQSOFF_TRACER
bool "Interrupts-off Latency Tracer"
default n
depends on TRACE_IRQFLAGS_SUPPORT
depends on GENERIC_TIME
select TRACE_IRQFLAGS
select TRACING
select TRACER_MAX_TRACE
help
This option measures the time spent in irqs-off critical
sections, with microsecond accuracy.
The default measurement method is a maximum search, which is
disabled by default and can be runtime (re-)started
via:
echo 0 > /debugfs/tracing/tracing_max_latency
(Note that kernel size and overhead increases with this option
enabled. This option and the preempt-off timing option can be
used together or separately.)
config PREEMPT_TRACER
bool "Preemption-off Latency Tracer"
default n
depends on GENERIC_TIME
depends on PREEMPT
select TRACING
select TRACER_MAX_TRACE
help
This option measures the time spent in preemption off critical
sections, with microsecond accuracy.
The default measurement method is a maximum search, which is
disabled by default and can be runtime (re-)started
via:
echo 0 > /debugfs/tracing/tracing_max_latency
(Note that kernel size and overhead increases with this option
enabled. This option and the irqs-off timing option can be
used together or separately.)
config SCHED_TRACER
bool "Scheduling Latency Tracer"
depends on DEBUG_KERNEL
select TRACING
select CONTEXT_SWITCH_TRACER
select TRACER_MAX_TRACE
help
This tracer tracks the latency of the highest priority task
to be scheduled in, starting from the point it has woken up.
config CONTEXT_SWITCH_TRACER
bool "Trace process context switches"
depends on DEBUG_KERNEL
select TRACING
select MARKERS
help
This tracer gets called from the context switch and records
all switching of tasks.
config DYNAMIC_FTRACE
bool "enable/disable ftrace tracepoints dynamically"
depends on FTRACE
default y
help
This option will modify all the calls to ftrace dynamically
(will patch them out of the binary image and replaces them
with a No-Op instruction) as they are called. A table is
created to dynamically enable them again.
This way a CONFIG_FTRACE kernel is slightly larger, but otherwise
has native performance as long as no tracing is active.
The changes to the code are done by a kernel thread that
wakes up once a second and checks to see if any ftrace calls
were made. If so, it runs stop_machine (stops all CPUS)
and modifies the code to jump over the call to ftrace.