linux-kernel-test/drivers/w1/w1_family.c
Evgeniy Polyakov 6adf87bd7b [PATCH] w1: reconnect feature.
I've created reconnect feature - if on start there are no registered families
all new devices will have defailt family, later when driver for appropriate
family is loaded, slaves, which were faound earlier, will still have defult
family instead of right one. Reconnect feature will force control thread to run
through all master devices and all slaves found and search for slaves with
default family id and try to reconnect them.

It does not store newly registered family and does not check only those slaves
which have reg_num.family the same as being registered one - all slaves with
default family are reconnected.

Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-06-21 21:43:12 -07:00

152 lines
3.1 KiB
C

/*
* w1_family.c
*
* Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/delay.h>
#include "w1_family.h"
DEFINE_SPINLOCK(w1_flock);
static LIST_HEAD(w1_families);
static int w1_check_family(struct w1_family *f)
{
if (!f->fops->rname || !f->fops->rbin)
return -EINVAL;
return 0;
}
int w1_register_family(struct w1_family *newf)
{
struct list_head *ent, *n;
struct w1_family *f;
int ret = 0;
if (w1_check_family(newf))
return -EINVAL;
spin_lock(&w1_flock);
list_for_each_safe(ent, n, &w1_families) {
f = list_entry(ent, struct w1_family, family_entry);
if (f->fid == newf->fid) {
ret = -EEXIST;
break;
}
}
if (!ret) {
atomic_set(&newf->refcnt, 0);
newf->need_exit = 0;
list_add_tail(&newf->family_entry, &w1_families);
}
spin_unlock(&w1_flock);
w1_reconnect_slaves(newf);
return ret;
}
void w1_unregister_family(struct w1_family *fent)
{
struct list_head *ent, *n;
struct w1_family *f;
spin_lock(&w1_flock);
list_for_each_safe(ent, n, &w1_families) {
f = list_entry(ent, struct w1_family, family_entry);
if (f->fid == fent->fid) {
list_del(&fent->family_entry);
break;
}
}
fent->need_exit = 1;
spin_unlock(&w1_flock);
while (atomic_read(&fent->refcnt)) {
printk(KERN_INFO "Waiting for family %u to become free: refcnt=%d.\n",
fent->fid, atomic_read(&fent->refcnt));
if (msleep_interruptible(1000))
flush_signals(current);
}
}
/*
* Should be called under w1_flock held.
*/
struct w1_family * w1_family_registered(u8 fid)
{
struct list_head *ent, *n;
struct w1_family *f = NULL;
int ret = 0;
list_for_each_safe(ent, n, &w1_families) {
f = list_entry(ent, struct w1_family, family_entry);
if (f->fid == fid) {
ret = 1;
break;
}
}
return (ret) ? f : NULL;
}
void w1_family_put(struct w1_family *f)
{
spin_lock(&w1_flock);
__w1_family_put(f);
spin_unlock(&w1_flock);
}
void __w1_family_put(struct w1_family *f)
{
if (atomic_dec_and_test(&f->refcnt))
f->need_exit = 1;
}
void w1_family_get(struct w1_family *f)
{
spin_lock(&w1_flock);
__w1_family_get(f);
spin_unlock(&w1_flock);
}
void __w1_family_get(struct w1_family *f)
{
smp_mb__before_atomic_inc();
atomic_inc(&f->refcnt);
smp_mb__after_atomic_inc();
}
EXPORT_SYMBOL(w1_family_get);
EXPORT_SYMBOL(w1_family_put);
EXPORT_SYMBOL(w1_family_registered);
EXPORT_SYMBOL(w1_unregister_family);
EXPORT_SYMBOL(w1_register_family);