linux-kernel-test/drivers/net/ariadne.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

865 lines
24 KiB
C

/*
* Amiga Linux/m68k Ariadne Ethernet Driver
*
* © Copyright 1995-2003 by Geert Uytterhoeven (geert@linux-m68k.org)
* Peter De Schrijver (p2@mind.be)
*
* ---------------------------------------------------------------------------
*
* This program is based on
*
* lance.c: An AMD LANCE ethernet driver for linux.
* Written 1993-94 by Donald Becker.
*
* Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller
* Advanced Micro Devices
* Publication #16907, Rev. B, Amendment/0, May 1994
*
* MC68230: Parallel Interface/Timer (PI/T)
* Motorola Semiconductors, December, 1983
*
* ---------------------------------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*
* ---------------------------------------------------------------------------
*
* The Ariadne is a Zorro-II board made by Village Tronic. It contains:
*
* - an Am79C960 PCnet-ISA Single-Chip Ethernet Controller with both
* 10BASE-2 (thin coax) and 10BASE-T (UTP) connectors
*
* - an MC68230 Parallel Interface/Timer configured as 2 parallel ports
*/
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/zorro.h>
#include <linux/bitops.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/irq.h>
#include "ariadne.h"
#ifdef ARIADNE_DEBUG
int ariadne_debug = ARIADNE_DEBUG;
#else
int ariadne_debug = 1;
#endif
/*
* Macros to Fix Endianness problems
*/
/* Swap the Bytes in a WORD */
#define swapw(x) (((x>>8)&0x00ff)|((x<<8)&0xff00))
/* Get the Low BYTE in a WORD */
#define lowb(x) (x&0xff)
/* Get the Swapped High WORD in a LONG */
#define swhighw(x) ((((x)>>8)&0xff00)|(((x)>>24)&0x00ff))
/* Get the Swapped Low WORD in a LONG */
#define swloww(x) ((((x)<<8)&0xff00)|(((x)>>8)&0x00ff))
/*
* Transmit/Receive Ring Definitions
*/
#define TX_RING_SIZE 5
#define RX_RING_SIZE 16
#define PKT_BUF_SIZE 1520
/*
* Private Device Data
*/
struct ariadne_private {
volatile struct TDRE *tx_ring[TX_RING_SIZE];
volatile struct RDRE *rx_ring[RX_RING_SIZE];
volatile u_short *tx_buff[TX_RING_SIZE];
volatile u_short *rx_buff[RX_RING_SIZE];
int cur_tx, cur_rx; /* The next free ring entry */
int dirty_tx; /* The ring entries to be free()ed. */
char tx_full;
};
/*
* Structure Created in the Ariadne's RAM Buffer
*/
struct lancedata {
struct TDRE tx_ring[TX_RING_SIZE];
struct RDRE rx_ring[RX_RING_SIZE];
u_short tx_buff[TX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)];
u_short rx_buff[RX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)];
};
static int ariadne_open(struct net_device *dev);
static void ariadne_init_ring(struct net_device *dev);
static netdev_tx_t ariadne_start_xmit(struct sk_buff *skb,
struct net_device *dev);
static void ariadne_tx_timeout(struct net_device *dev);
static int ariadne_rx(struct net_device *dev);
static void ariadne_reset(struct net_device *dev);
static irqreturn_t ariadne_interrupt(int irq, void *data);
static int ariadne_close(struct net_device *dev);
static struct net_device_stats *ariadne_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void memcpyw(volatile u_short *dest, u_short *src, int len)
{
while (len >= 2) {
*(dest++) = *(src++);
len -= 2;
}
if (len == 1)
*dest = (*(u_char *)src)<<8;
}
static int __devinit ariadne_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent);
static void __devexit ariadne_remove_one(struct zorro_dev *z);
static struct zorro_device_id ariadne_zorro_tbl[] __devinitdata = {
{ ZORRO_PROD_VILLAGE_TRONIC_ARIADNE },
{ 0 }
};
static struct zorro_driver ariadne_driver = {
.name = "ariadne",
.id_table = ariadne_zorro_tbl,
.probe = ariadne_init_one,
.remove = __devexit_p(ariadne_remove_one),
};
static const struct net_device_ops ariadne_netdev_ops = {
.ndo_open = ariadne_open,
.ndo_stop = ariadne_close,
.ndo_start_xmit = ariadne_start_xmit,
.ndo_tx_timeout = ariadne_tx_timeout,
.ndo_get_stats = ariadne_get_stats,
.ndo_set_multicast_list = set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
};
static int __devinit ariadne_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent)
{
unsigned long board = z->resource.start;
unsigned long base_addr = board+ARIADNE_LANCE;
unsigned long mem_start = board+ARIADNE_RAM;
struct resource *r1, *r2;
struct net_device *dev;
struct ariadne_private *priv;
int err;
r1 = request_mem_region(base_addr, sizeof(struct Am79C960), "Am79C960");
if (!r1)
return -EBUSY;
r2 = request_mem_region(mem_start, ARIADNE_RAM_SIZE, "RAM");
if (!r2) {
release_resource(r1);
return -EBUSY;
}
dev = alloc_etherdev(sizeof(struct ariadne_private));
if (dev == NULL) {
release_resource(r1);
release_resource(r2);
return -ENOMEM;
}
priv = netdev_priv(dev);
r1->name = dev->name;
r2->name = dev->name;
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x60;
dev->dev_addr[2] = 0x30;
dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff;
dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff;
dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff;
dev->base_addr = ZTWO_VADDR(base_addr);
dev->mem_start = ZTWO_VADDR(mem_start);
dev->mem_end = dev->mem_start+ARIADNE_RAM_SIZE;
dev->netdev_ops = &ariadne_netdev_ops;
dev->watchdog_timeo = 5*HZ;
err = register_netdev(dev);
if (err) {
release_resource(r1);
release_resource(r2);
free_netdev(dev);
return err;
}
zorro_set_drvdata(z, dev);
printk(KERN_INFO "%s: Ariadne at 0x%08lx, Ethernet Address %pM\n",
dev->name, board, dev->dev_addr);
return 0;
}
static int ariadne_open(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
u_short in;
u_long version;
int i;
/* Reset the LANCE */
in = lance->Reset;
/* Stop the LANCE */
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = STOP;
/* Check the LANCE version */
lance->RAP = CSR88; /* Chip ID */
version = swapw(lance->RDP);
lance->RAP = CSR89; /* Chip ID */
version |= swapw(lance->RDP)<<16;
if ((version & 0x00000fff) != 0x00000003) {
printk(KERN_WARNING "ariadne_open: Couldn't find AMD Ethernet Chip\n");
return -EAGAIN;
}
if ((version & 0x0ffff000) != 0x00003000) {
printk(KERN_WARNING "ariadne_open: Couldn't find Am79C960 (Wrong part "
"number = %ld)\n", (version & 0x0ffff000)>>12);
return -EAGAIN;
}
#if 0
printk(KERN_DEBUG "ariadne_open: Am79C960 (PCnet-ISA) Revision %ld\n",
(version & 0xf0000000)>>28);
#endif
ariadne_init_ring(dev);
/* Miscellaneous Stuff */
lance->RAP = CSR3; /* Interrupt Masks and Deferral Control */
lance->RDP = 0x0000;
lance->RAP = CSR4; /* Test and Features Control */
lance->RDP = DPOLL|APAD_XMT|MFCOM|RCVCCOM|TXSTRTM|JABM;
/* Set the Multicast Table */
lance->RAP = CSR8; /* Logical Address Filter, LADRF[15:0] */
lance->RDP = 0x0000;
lance->RAP = CSR9; /* Logical Address Filter, LADRF[31:16] */
lance->RDP = 0x0000;
lance->RAP = CSR10; /* Logical Address Filter, LADRF[47:32] */
lance->RDP = 0x0000;
lance->RAP = CSR11; /* Logical Address Filter, LADRF[63:48] */
lance->RDP = 0x0000;
/* Set the Ethernet Hardware Address */
lance->RAP = CSR12; /* Physical Address Register, PADR[15:0] */
lance->RDP = ((u_short *)&dev->dev_addr[0])[0];
lance->RAP = CSR13; /* Physical Address Register, PADR[31:16] */
lance->RDP = ((u_short *)&dev->dev_addr[0])[1];
lance->RAP = CSR14; /* Physical Address Register, PADR[47:32] */
lance->RDP = ((u_short *)&dev->dev_addr[0])[2];
/* Set the Init Block Mode */
lance->RAP = CSR15; /* Mode Register */
lance->RDP = 0x0000;
/* Set the Transmit Descriptor Ring Pointer */
lance->RAP = CSR30; /* Base Address of Transmit Ring */
lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_ring));
lance->RAP = CSR31; /* Base Address of transmit Ring */
lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_ring));
/* Set the Receive Descriptor Ring Pointer */
lance->RAP = CSR24; /* Base Address of Receive Ring */
lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_ring));
lance->RAP = CSR25; /* Base Address of Receive Ring */
lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_ring));
/* Set the Number of RX and TX Ring Entries */
lance->RAP = CSR76; /* Receive Ring Length */
lance->RDP = swapw(((u_short)-RX_RING_SIZE));
lance->RAP = CSR78; /* Transmit Ring Length */
lance->RDP = swapw(((u_short)-TX_RING_SIZE));
/* Enable Media Interface Port Auto Select (10BASE-2/10BASE-T) */
lance->RAP = ISACSR2; /* Miscellaneous Configuration */
lance->IDP = ASEL;
/* LED Control */
lance->RAP = ISACSR5; /* LED1 Status */
lance->IDP = PSE|XMTE;
lance->RAP = ISACSR6; /* LED2 Status */
lance->IDP = PSE|COLE;
lance->RAP = ISACSR7; /* LED3 Status */
lance->IDP = PSE|RCVE;
netif_start_queue(dev);
i = request_irq(IRQ_AMIGA_PORTS, ariadne_interrupt, IRQF_SHARED,
dev->name, dev);
if (i) return i;
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = INEA|STRT;
return 0;
}
static void ariadne_init_ring(struct net_device *dev)
{
struct ariadne_private *priv = netdev_priv(dev);
volatile struct lancedata *lancedata = (struct lancedata *)dev->mem_start;
int i;
netif_stop_queue(dev);
priv->tx_full = 0;
priv->cur_rx = priv->cur_tx = 0;
priv->dirty_tx = 0;
/* Set up TX Ring */
for (i = 0; i < TX_RING_SIZE; i++) {
volatile struct TDRE *t = &lancedata->tx_ring[i];
t->TMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i]));
t->TMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i])) |
TF_STP | TF_ENP;
t->TMD2 = swapw((u_short)-PKT_BUF_SIZE);
t->TMD3 = 0;
priv->tx_ring[i] = &lancedata->tx_ring[i];
priv->tx_buff[i] = lancedata->tx_buff[i];
#if 0
printk(KERN_DEBUG "TX Entry %2d at %p, Buf at %p\n", i,
&lancedata->tx_ring[i], lancedata->tx_buff[i]);
#endif
}
/* Set up RX Ring */
for (i = 0; i < RX_RING_SIZE; i++) {
volatile struct RDRE *r = &lancedata->rx_ring[i];
r->RMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i]));
r->RMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i])) |
RF_OWN;
r->RMD2 = swapw((u_short)-PKT_BUF_SIZE);
r->RMD3 = 0x0000;
priv->rx_ring[i] = &lancedata->rx_ring[i];
priv->rx_buff[i] = lancedata->rx_buff[i];
#if 0
printk(KERN_DEBUG "RX Entry %2d at %p, Buf at %p\n", i,
&lancedata->rx_ring[i], lancedata->rx_buff[i]);
#endif
}
}
static int ariadne_close(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
netif_stop_queue(dev);
lance->RAP = CSR112; /* Missed Frame Count */
dev->stats.rx_missed_errors = swapw(lance->RDP);
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
if (ariadne_debug > 1) {
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
dev->name, lance->RDP);
printk(KERN_DEBUG "%s: %lu packets missed\n", dev->name,
dev->stats.rx_missed_errors);
}
/* We stop the LANCE here -- it occasionally polls memory if we don't. */
lance->RDP = STOP;
free_irq(IRQ_AMIGA_PORTS, dev);
return 0;
}
static inline void ariadne_reset(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = STOP;
ariadne_init_ring(dev);
lance->RDP = INEA|STRT;
netif_start_queue(dev);
}
static irqreturn_t ariadne_interrupt(int irq, void *data)
{
struct net_device *dev = (struct net_device *)data;
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
struct ariadne_private *priv;
int csr0, boguscnt;
int handled = 0;
if (dev == NULL) {
printk(KERN_WARNING "ariadne_interrupt(): irq for unknown device.\n");
return IRQ_NONE;
}
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
if (!(lance->RDP & INTR)) /* Check if any interrupt has been */
return IRQ_NONE; /* generated by the board. */
priv = netdev_priv(dev);
boguscnt = 10;
while ((csr0 = lance->RDP) & (ERR|RINT|TINT) && --boguscnt >= 0) {
/* Acknowledge all of the current interrupt sources ASAP. */
lance->RDP = csr0 & ~(INEA|TDMD|STOP|STRT|INIT);
#if 0
if (ariadne_debug > 5) {
printk(KERN_DEBUG "%s: interrupt csr0=%#2.2x new csr=%#2.2x.",
dev->name, csr0, lance->RDP);
printk("[");
if (csr0 & INTR)
printk(" INTR");
if (csr0 & INEA)
printk(" INEA");
if (csr0 & RXON)
printk(" RXON");
if (csr0 & TXON)
printk(" TXON");
if (csr0 & TDMD)
printk(" TDMD");
if (csr0 & STOP)
printk(" STOP");
if (csr0 & STRT)
printk(" STRT");
if (csr0 & INIT)
printk(" INIT");
if (csr0 & ERR)
printk(" ERR");
if (csr0 & BABL)
printk(" BABL");
if (csr0 & CERR)
printk(" CERR");
if (csr0 & MISS)
printk(" MISS");
if (csr0 & MERR)
printk(" MERR");
if (csr0 & RINT)
printk(" RINT");
if (csr0 & TINT)
printk(" TINT");
if (csr0 & IDON)
printk(" IDON");
printk(" ]\n");
}
#endif
if (csr0 & RINT) { /* Rx interrupt */
handled = 1;
ariadne_rx(dev);
}
if (csr0 & TINT) { /* Tx-done interrupt */
int dirty_tx = priv->dirty_tx;
handled = 1;
while (dirty_tx < priv->cur_tx) {
int entry = dirty_tx % TX_RING_SIZE;
int status = lowb(priv->tx_ring[entry]->TMD1);
if (status & TF_OWN)
break; /* It still hasn't been Txed */
priv->tx_ring[entry]->TMD1 &= 0xff00;
if (status & TF_ERR) {
/* There was an major error, log it. */
int err_status = priv->tx_ring[entry]->TMD3;
dev->stats.tx_errors++;
if (err_status & EF_RTRY)
dev->stats.tx_aborted_errors++;
if (err_status & EF_LCAR)
dev->stats.tx_carrier_errors++;
if (err_status & EF_LCOL)
dev->stats.tx_window_errors++;
if (err_status & EF_UFLO) {
/* Ackk! On FIFO errors the Tx unit is turned off! */
dev->stats.tx_fifo_errors++;
/* Remove this verbosity later! */
printk(KERN_ERR "%s: Tx FIFO error! Status %4.4x.\n",
dev->name, csr0);
/* Restart the chip. */
lance->RDP = STRT;
}
} else {
if (status & (TF_MORE|TF_ONE))
dev->stats.collisions++;
dev->stats.tx_packets++;
}
dirty_tx++;
}
#ifndef final_version
if (priv->cur_tx - dirty_tx >= TX_RING_SIZE) {
printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d, "
"full=%d.\n", dirty_tx, priv->cur_tx, priv->tx_full);
dirty_tx += TX_RING_SIZE;
}
#endif
if (priv->tx_full && netif_queue_stopped(dev) &&
dirty_tx > priv->cur_tx - TX_RING_SIZE + 2) {
/* The ring is no longer full. */
priv->tx_full = 0;
netif_wake_queue(dev);
}
priv->dirty_tx = dirty_tx;
}
/* Log misc errors. */
if (csr0 & BABL) {
handled = 1;
dev->stats.tx_errors++; /* Tx babble. */
}
if (csr0 & MISS) {
handled = 1;
dev->stats.rx_errors++; /* Missed a Rx frame. */
}
if (csr0 & MERR) {
handled = 1;
printk(KERN_ERR "%s: Bus master arbitration failure, status "
"%4.4x.\n", dev->name, csr0);
/* Restart the chip. */
lance->RDP = STRT;
}
}
/* Clear any other interrupt, and set interrupt enable. */
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = INEA|BABL|CERR|MISS|MERR|IDON;
#if 0
if (ariadne_debug > 4)
printk(KERN_DEBUG "%s: exiting interrupt, csr%d=%#4.4x.\n", dev->name,
lance->RAP, lance->RDP);
#endif
return IRQ_RETVAL(handled);
}
static void ariadne_tx_timeout(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
printk(KERN_ERR "%s: transmit timed out, status %4.4x, resetting.\n",
dev->name, lance->RDP);
ariadne_reset(dev);
netif_wake_queue(dev);
}
static netdev_tx_t ariadne_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ariadne_private *priv = netdev_priv(dev);
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
int entry;
unsigned long flags;
int len = skb->len;
#if 0
if (ariadne_debug > 3) {
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
printk(KERN_DEBUG "%s: ariadne_start_xmit() called, csr0 %4.4x.\n",
dev->name, lance->RDP);
lance->RDP = 0x0000;
}
#endif
/* FIXME: is the 79C960 new enough to do its own padding right ? */
if (skb->len < ETH_ZLEN)
{
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
len = ETH_ZLEN;
}
/* Fill in a Tx ring entry */
#if 0
{
printk(KERN_DEBUG "TX pkt type 0x%04x from %pM to %pM "
" data 0x%08x len %d\n",
((u_short *)skb->data)[6],
skb->data + 6, skb->data,
(int)skb->data, (int)skb->len);
}
#endif
local_irq_save(flags);
entry = priv->cur_tx % TX_RING_SIZE;
/* Caution: the write order is important here, set the base address with
the "ownership" bits last. */
priv->tx_ring[entry]->TMD2 = swapw((u_short)-skb->len);
priv->tx_ring[entry]->TMD3 = 0x0000;
memcpyw(priv->tx_buff[entry], (u_short *)skb->data, len);
#if 0
{
int i, len;
len = skb->len > 64 ? 64 : skb->len;
len >>= 1;
for (i = 0; i < len; i += 8) {
int j;
printk(KERN_DEBUG "%04x:", i);
for (j = 0; (j < 8) && ((i+j) < len); j++) {
if (!(j & 1))
printk(" ");
printk("%04x", priv->tx_buff[entry][i+j]);
}
printk("\n");
}
}
#endif
priv->tx_ring[entry]->TMD1 = (priv->tx_ring[entry]->TMD1&0xff00)|TF_OWN|TF_STP|TF_ENP;
dev_kfree_skb(skb);
priv->cur_tx++;
if ((priv->cur_tx >= TX_RING_SIZE) && (priv->dirty_tx >= TX_RING_SIZE)) {
#if 0
printk(KERN_DEBUG "*** Subtracting TX_RING_SIZE from cur_tx (%d) and "
"dirty_tx (%d)\n", priv->cur_tx, priv->dirty_tx);
#endif
priv->cur_tx -= TX_RING_SIZE;
priv->dirty_tx -= TX_RING_SIZE;
}
dev->stats.tx_bytes += len;
/* Trigger an immediate send poll. */
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = INEA|TDMD;
dev->trans_start = jiffies;
if (lowb(priv->tx_ring[(entry+1) % TX_RING_SIZE]->TMD1) != 0) {
netif_stop_queue(dev);
priv->tx_full = 1;
}
local_irq_restore(flags);
return NETDEV_TX_OK;
}
static int ariadne_rx(struct net_device *dev)
{
struct ariadne_private *priv = netdev_priv(dev);
int entry = priv->cur_rx % RX_RING_SIZE;
int i;
/* If we own the next entry, it's a new packet. Send it up. */
while (!(lowb(priv->rx_ring[entry]->RMD1) & RF_OWN)) {
int status = lowb(priv->rx_ring[entry]->RMD1);
if (status != (RF_STP|RF_ENP)) { /* There was an error. */
/* There is a tricky error noted by John Murphy,
<murf@perftech.com> to Russ Nelson: Even with full-sized
buffers it's possible for a jabber packet to use two
buffers, with only the last correctly noting the error. */
if (status & RF_ENP)
/* Only count a general error at the end of a packet.*/
dev->stats.rx_errors++;
if (status & RF_FRAM)
dev->stats.rx_frame_errors++;
if (status & RF_OFLO)
dev->stats.rx_over_errors++;
if (status & RF_CRC)
dev->stats.rx_crc_errors++;
if (status & RF_BUFF)
dev->stats.rx_fifo_errors++;
priv->rx_ring[entry]->RMD1 &= 0xff00|RF_STP|RF_ENP;
} else {
/* Malloc up new buffer, compatible with net-3. */
short pkt_len = swapw(priv->rx_ring[entry]->RMD3);
struct sk_buff *skb;
skb = dev_alloc_skb(pkt_len+2);
if (skb == NULL) {
printk(KERN_WARNING "%s: Memory squeeze, deferring packet.\n",
dev->name);
for (i = 0; i < RX_RING_SIZE; i++)
if (lowb(priv->rx_ring[(entry+i) % RX_RING_SIZE]->RMD1) & RF_OWN)
break;
if (i > RX_RING_SIZE-2) {
dev->stats.rx_dropped++;
priv->rx_ring[entry]->RMD1 |= RF_OWN;
priv->cur_rx++;
}
break;
}
skb_reserve(skb,2); /* 16 byte align */
skb_put(skb,pkt_len); /* Make room */
skb_copy_to_linear_data(skb, (char *)priv->rx_buff[entry], pkt_len);
skb->protocol=eth_type_trans(skb,dev);
#if 0
{
printk(KERN_DEBUG "RX pkt type 0x%04x from ",
((u_short *)skb->data)[6]);
{
u_char *ptr = &((u_char *)skb->data)[6];
printk("%pM", ptr);
}
printk(" to ");
{
u_char *ptr = (u_char *)skb->data;
printk("%pM", ptr);
}
printk(" data 0x%08x len %d\n", (int)skb->data, (int)skb->len);
}
#endif
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
priv->rx_ring[entry]->RMD1 |= RF_OWN;
entry = (++priv->cur_rx) % RX_RING_SIZE;
}
priv->cur_rx = priv->cur_rx % RX_RING_SIZE;
/* We should check that at least two ring entries are free. If not,
we should free one and mark stats->rx_dropped++. */
return 0;
}
static struct net_device_stats *ariadne_get_stats(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
short saved_addr;
unsigned long flags;
local_irq_save(flags);
saved_addr = lance->RAP;
lance->RAP = CSR112; /* Missed Frame Count */
dev->stats.rx_missed_errors = swapw(lance->RDP);
lance->RAP = saved_addr;
local_irq_restore(flags);
return &dev->stats;
}
/* Set or clear the multicast filter for this adaptor.
num_addrs == -1 Promiscuous mode, receive all packets
num_addrs == 0 Normal mode, clear multicast list
num_addrs > 0 Multicast mode, receive normal and MC packets, and do
best-effort filtering.
*/
static void set_multicast_list(struct net_device *dev)
{
volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
if (!netif_running(dev))
return;
netif_stop_queue(dev);
/* We take the simple way out and always enable promiscuous mode. */
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = STOP; /* Temporarily stop the lance. */
ariadne_init_ring(dev);
if (dev->flags & IFF_PROMISC) {
lance->RAP = CSR15; /* Mode Register */
lance->RDP = PROM; /* Set promiscuous mode */
} else {
short multicast_table[4];
int num_addrs = netdev_mc_count(dev);
int i;
/* We don't use the multicast table, but rely on upper-layer filtering. */
memset(multicast_table, (num_addrs == 0) ? 0 : -1,
sizeof(multicast_table));
for (i = 0; i < 4; i++) {
lance->RAP = CSR8+(i<<8); /* Logical Address Filter */
lance->RDP = swapw(multicast_table[i]);
}
lance->RAP = CSR15; /* Mode Register */
lance->RDP = 0x0000; /* Unset promiscuous mode */
}
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
lance->RDP = INEA|STRT|IDON; /* Resume normal operation. */
netif_wake_queue(dev);
}
static void __devexit ariadne_remove_one(struct zorro_dev *z)
{
struct net_device *dev = zorro_get_drvdata(z);
unregister_netdev(dev);
release_mem_region(ZTWO_PADDR(dev->base_addr), sizeof(struct Am79C960));
release_mem_region(ZTWO_PADDR(dev->mem_start), ARIADNE_RAM_SIZE);
free_netdev(dev);
}
static int __init ariadne_init_module(void)
{
return zorro_register_driver(&ariadne_driver);
}
static void __exit ariadne_cleanup_module(void)
{
zorro_unregister_driver(&ariadne_driver);
}
module_init(ariadne_init_module);
module_exit(ariadne_cleanup_module);
MODULE_LICENSE("GPL");