linux-kernel-test/arch/powerpc/boot/devtree.c
Scott Wood e4bb688d9f [POWERPC] bootwrapper: Fix array handling in dt_xlate_reg().
This fixes a few bugs in how dt_xlate_reg() handles address arrays:

1. copy_val() was copying into the wrong end of the array, resulting
in random stack garbage at the other end.
2. dt_xlate_reg() was getting the result from the wrong end of the array.
3. add_reg() and sub_reg() were treating the arrays as
little-endian rather than big-endian.
4. add_reg() only returned an error on a carry out of the entire
array, rather than out of the naddr portion.
5. The requested reg resource was checked to see if it exceeded
the size of the reg property, but not to see if it exceeded the
size of the buffer.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-04-27 21:13:56 +10:00

289 lines
6.5 KiB
C

/*
* devtree.c - convenience functions for device tree manipulation
* Copyright 2007 David Gibson, IBM Corporation.
* Copyright (c) 2007 Freescale Semiconductor, Inc.
*
* Authors: David Gibson <david@gibson.dropbear.id.au>
* Scott Wood <scottwood@freescale.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <stdarg.h>
#include <stddef.h>
#include "types.h"
#include "string.h"
#include "stdio.h"
#include "ops.h"
void dt_fixup_memory(u64 start, u64 size)
{
void *root, *memory;
int naddr, nsize, i;
u32 memreg[4];
root = finddevice("/");
if (getprop(root, "#address-cells", &naddr, sizeof(naddr)) < 0)
naddr = 2;
if (naddr < 1 || naddr > 2)
fatal("Can't cope with #address-cells == %d in /\n\r", naddr);
if (getprop(root, "#size-cells", &nsize, sizeof(nsize)) < 0)
nsize = 1;
if (nsize < 1 || nsize > 2)
fatal("Can't cope with #size-cells == %d in /\n\r", nsize);
i = 0;
if (naddr == 2)
memreg[i++] = start >> 32;
memreg[i++] = start & 0xffffffff;
if (nsize == 2)
memreg[i++] = size >> 32;
memreg[i++] = size & 0xffffffff;
memory = finddevice("/memory");
if (! memory) {
memory = create_node(NULL, "memory");
setprop_str(memory, "device_type", "memory");
}
printf("Memory <- <0x%x", memreg[0]);
for (i = 1; i < (naddr + nsize); i++)
printf(" 0x%x", memreg[i]);
printf("> (%ldMB)\n\r", (unsigned long)(size >> 20));
setprop(memory, "reg", memreg, (naddr + nsize)*sizeof(u32));
}
#define MHZ(x) ((x + 500000) / 1000000)
void dt_fixup_cpu_clocks(u32 cpu, u32 tb, u32 bus)
{
void *devp = NULL;
printf("CPU clock-frequency <- 0x%x (%dMHz)\n\r", cpu, MHZ(cpu));
printf("CPU timebase-frequency <- 0x%x (%dMHz)\n\r", tb, MHZ(tb));
if (bus > 0)
printf("CPU bus-frequency <- 0x%x (%dMHz)\n\r", bus, MHZ(bus));
while ((devp = find_node_by_devtype(devp, "cpu"))) {
setprop_val(devp, "clock-frequency", cpu);
setprop_val(devp, "timebase-frequency", tb);
if (bus > 0)
setprop_val(devp, "bus-frequency", bus);
}
}
void dt_fixup_clock(const char *path, u32 freq)
{
void *devp = finddevice(path);
if (devp) {
printf("%s: clock-frequency <- %x (%dMHz)\n\r", path, freq, MHZ(freq));
setprop_val(devp, "clock-frequency", freq);
}
}
void __dt_fixup_mac_addresses(u32 startindex, ...)
{
va_list ap;
u32 index = startindex;
void *devp;
const u8 *addr;
va_start(ap, startindex);
while ((addr = va_arg(ap, const u8 *))) {
devp = find_node_by_prop_value(NULL, "linux,network-index",
(void*)&index, sizeof(index));
printf("ENET%d: local-mac-address <-"
" %02x:%02x:%02x:%02x:%02x:%02x\n\r", index,
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
if (devp)
setprop(devp, "local-mac-address", addr, 6);
index++;
}
va_end(ap);
}
#define MAX_ADDR_CELLS 4
#define MAX_RANGES 8
static void get_reg_format(void *node, u32 *naddr, u32 *nsize)
{
if (getprop(node, "#address-cells", naddr, 4) != 4)
*naddr = 2;
if (getprop(node, "#size-cells", nsize, 4) != 4)
*nsize = 1;
}
static void copy_val(u32 *dest, u32 *src, int naddr)
{
int pad = MAX_ADDR_CELLS - naddr;
memset(dest, 0, pad * 4);
memcpy(dest + pad, src, naddr * 4);
}
static int sub_reg(u32 *reg, u32 *sub)
{
int i, borrow = 0;
for (i = MAX_ADDR_CELLS - 1; i >= 0; i--) {
int prev_borrow = borrow;
borrow = reg[i] < sub[i] + prev_borrow;
reg[i] -= sub[i] + prev_borrow;
}
return !borrow;
}
static int add_reg(u32 *reg, u32 *add, int naddr)
{
int i, carry = 0;
for (i = MAX_ADDR_CELLS - 1; i >= MAX_ADDR_CELLS - naddr; i--) {
u64 tmp = (u64)reg[i] + add[i] + carry;
carry = tmp >> 32;
reg[i] = (u32)tmp;
}
return !carry;
}
/* It is assumed that if the first byte of reg fits in a
* range, then the whole reg block fits.
*/
static int compare_reg(u32 *reg, u32 *range, u32 *rangesize)
{
int i;
u32 end;
for (i = 0; i < MAX_ADDR_CELLS; i++) {
if (reg[i] < range[i])
return 0;
if (reg[i] > range[i])
break;
}
for (i = 0; i < MAX_ADDR_CELLS; i++) {
end = range[i] + rangesize[i];
if (reg[i] < end)
break;
if (reg[i] > end)
return 0;
}
return reg[i] != end;
}
/* reg must be MAX_ADDR_CELLS */
static int find_range(u32 *reg, u32 *ranges, int nregaddr,
int naddr, int nsize, int buflen)
{
int nrange = nregaddr + naddr + nsize;
int i;
for (i = 0; i + nrange <= buflen; i += nrange) {
u32 range_addr[MAX_ADDR_CELLS];
u32 range_size[MAX_ADDR_CELLS];
copy_val(range_addr, ranges + i, naddr);
copy_val(range_size, ranges + i + nregaddr + naddr, nsize);
if (compare_reg(reg, range_addr, range_size))
return i;
}
return -1;
}
/* Currently only generic buses without special encodings are supported.
* In particular, PCI is not supported. Also, only the beginning of the
* reg block is tracked; size is ignored except in ranges.
*/
int dt_xlate_reg(void *node, int res, unsigned long *addr,
unsigned long *size)
{
u32 last_addr[MAX_ADDR_CELLS];
u32 this_addr[MAX_ADDR_CELLS];
u32 buf[MAX_ADDR_CELLS * MAX_RANGES * 3];
void *parent;
u64 ret_addr, ret_size;
u32 naddr, nsize, prev_naddr;
int buflen, offset;
parent = get_parent(node);
if (!parent)
return 0;
get_reg_format(parent, &naddr, &nsize);
if (nsize > 2)
return 0;
buflen = getprop(node, "reg", buf, sizeof(buf)) / 4;
offset = (naddr + nsize) * res;
if (buflen < offset + naddr + nsize ||
sizeof(buf) < offset + naddr + nsize)
return 0;
copy_val(last_addr, buf + offset, naddr);
ret_size = buf[offset + naddr];
if (nsize == 2) {
ret_size <<= 32;
ret_size |= buf[offset + naddr + 1];
}
while ((node = get_parent(node))) {
prev_naddr = naddr;
get_reg_format(node, &naddr, &nsize);
buflen = getprop(node, "ranges", buf, sizeof(buf));
if (buflen < 0)
continue;
if (buflen > sizeof(buf))
return 0;
offset = find_range(last_addr, buf, prev_naddr,
naddr, nsize, buflen / 4);
if (offset < 0)
return 0;
copy_val(this_addr, buf + offset, prev_naddr);
if (!sub_reg(last_addr, this_addr))
return 0;
copy_val(this_addr, buf + offset + prev_naddr, naddr);
if (!add_reg(last_addr, this_addr, naddr))
return 0;
}
if (naddr > 2)
return 0;
ret_addr = ((u64)last_addr[2] << 32) | last_addr[3];
if (sizeof(void *) == 4 &&
(ret_addr >= 0x100000000ULL || ret_size > 0x100000000ULL ||
ret_addr + ret_size > 0x100000000ULL))
return 0;
*addr = ret_addr;
if (size)
*size = ret_size;
return 1;
}