linux-kernel-test/drivers/net/chelsio/pm3393.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

796 lines
30 KiB
C

/*****************************************************************************
* *
* File: pm3393.c *
* $Revision: 1.16 $ *
* $Date: 2005/05/14 00:59:32 $ *
* Description: *
* PMC/SIERRA (pm3393) MAC-PHY functionality. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include "regs.h"
#include "gmac.h"
#include "elmer0.h"
#include "suni1x10gexp_regs.h"
#include <linux/crc32.h>
#include <linux/slab.h>
#define OFFSET(REG_ADDR) ((REG_ADDR) << 2)
/* Max frame size PM3393 can handle. Includes Ethernet header and CRC. */
#define MAX_FRAME_SIZE 9600
#define IPG 12
#define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \
SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \
SUNI1x10GEXP_BITMSK_TXXG_PADEN)
#define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \
SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP)
/* Update statistics every 15 minutes */
#define STATS_TICK_SECS (15 * 60)
enum { /* RMON registers */
RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW,
RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW,
RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW,
RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW,
RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW,
RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW,
RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW,
RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW,
RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW,
RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW,
RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW,
RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW,
RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW,
RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW,
RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW,
TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW,
TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW,
TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW,
TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW,
TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW,
TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW,
TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW,
TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW,
TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW
};
struct _cmac_instance {
u8 enabled;
u8 fc;
u8 mac_addr[6];
};
static int pmread(struct cmac *cmac, u32 reg, u32 * data32)
{
t1_tpi_read(cmac->adapter, OFFSET(reg), data32);
return 0;
}
static int pmwrite(struct cmac *cmac, u32 reg, u32 data32)
{
t1_tpi_write(cmac->adapter, OFFSET(reg), data32);
return 0;
}
/* Port reset. */
static int pm3393_reset(struct cmac *cmac)
{
return 0;
}
/*
* Enable interrupts for the PM3393
*
* 1. Enable PM3393 BLOCK interrupts.
* 2. Enable PM3393 Master Interrupt bit(INTE)
* 3. Enable ELMER's PM3393 bit.
* 4. Enable Terminator external interrupt.
*/
static int pm3393_interrupt_enable(struct cmac *cmac)
{
u32 pl_intr;
/* PM3393 - Enabling all hardware block interrupts.
*/
pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff);
/* Don't interrupt on statistics overflow, we are polling */
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff);
/* PM3393 - Global interrupt enable
*/
/* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */
pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE,
0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ );
/* TERMINATOR - PL_INTERUPTS_EXT */
pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE);
pl_intr |= F_PL_INTR_EXT;
writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE);
return 0;
}
static int pm3393_interrupt_disable(struct cmac *cmac)
{
u32 elmer;
/* PM3393 - Enabling HW interrupt blocks. */
pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0);
pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0);
/* PM3393 - Global interrupt enable */
pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0);
/* ELMER - External chip interrupts. */
t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer &= ~ELMER0_GP_BIT1;
t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer);
/* TERMINATOR - PL_INTERUPTS_EXT */
/* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP
* COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level.
*/
return 0;
}
static int pm3393_interrupt_clear(struct cmac *cmac)
{
u32 elmer;
u32 pl_intr;
u32 val32;
/* PM3393 - Clearing HW interrupt blocks. Note, this assumes
* bit WCIMODE=0 for a clear-on-read.
*/
pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32);
pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION,
&val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32);
pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32);
/* PM3393 - Global interrupt status
*/
pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32);
/* ELMER - External chip interrupts.
*/
t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer);
elmer |= ELMER0_GP_BIT1;
t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer);
/* TERMINATOR - PL_INTERUPTS_EXT
*/
pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE);
pl_intr |= F_PL_INTR_EXT;
writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE);
return 0;
}
/* Interrupt handler */
static int pm3393_interrupt_handler(struct cmac *cmac)
{
u32 master_intr_status;
/* Read the master interrupt status register. */
pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS,
&master_intr_status);
if (netif_msg_intr(cmac->adapter))
dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n",
master_intr_status);
/* TBD XXX Lets just clear everything for now */
pm3393_interrupt_clear(cmac);
return 0;
}
static int pm3393_enable(struct cmac *cmac, int which)
{
if (which & MAC_DIRECTION_RX)
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1,
(RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN));
if (which & MAC_DIRECTION_TX) {
u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0;
if (cmac->instance->fc & PAUSE_RX)
val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX;
if (cmac->instance->fc & PAUSE_TX)
val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX;
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val);
}
cmac->instance->enabled |= which;
return 0;
}
static int pm3393_enable_port(struct cmac *cmac, int which)
{
/* Clear port statistics */
pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
SUNI1x10GEXP_BITMSK_MSTAT_CLEAR);
udelay(2);
memset(&cmac->stats, 0, sizeof(struct cmac_statistics));
pm3393_enable(cmac, which);
/*
* XXX This should be done by the PHY and preferrably not at all.
* The PHY doesn't give us link status indication on its own so have
* the link management code query it instead.
*/
t1_link_changed(cmac->adapter, 0);
return 0;
}
static int pm3393_disable(struct cmac *cmac, int which)
{
if (which & MAC_DIRECTION_RX)
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL);
if (which & MAC_DIRECTION_TX)
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL);
/*
* The disable is graceful. Give the PM3393 time. Can't wait very
* long here, we may be holding locks.
*/
udelay(20);
cmac->instance->enabled &= ~which;
return 0;
}
static int pm3393_loopback_enable(struct cmac *cmac)
{
return 0;
}
static int pm3393_loopback_disable(struct cmac *cmac)
{
return 0;
}
static int pm3393_set_mtu(struct cmac *cmac, int mtu)
{
int enabled = cmac->instance->enabled;
/* MAX_FRAME_SIZE includes header + FCS, mtu doesn't */
mtu += 14 + 4;
if (mtu > MAX_FRAME_SIZE)
return -EINVAL;
/* Disable Rx/Tx MAC before configuring it. */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu);
if (enabled)
pm3393_enable(cmac, enabled);
return 0;
}
static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm)
{
int enabled = cmac->instance->enabled & MAC_DIRECTION_RX;
u32 rx_mode;
/* Disable MAC RX before reconfiguring it */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX);
pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode);
rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE |
SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2,
(u16)rx_mode);
if (t1_rx_mode_promisc(rm)) {
/* Promiscuous mode. */
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE;
}
if (t1_rx_mode_allmulti(rm)) {
/* Accept all multicast. */
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff);
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
} else if (t1_rx_mode_mc_cnt(rm)) {
/* Accept one or more multicast(s). */
struct dev_mc_list *dmi;
int bit;
u16 mc_filter[4] = { 0, };
netdev_for_each_mc_addr(dmi, t1_get_netdev(rm)) {
bit = (ether_crc(ETH_ALEN, dmi->dmi_addr) >> 23) & 0x3f; /* bit[23:28] */
mc_filter[bit >> 4] |= 1 << (bit & 0xf);
}
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]);
rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
}
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode);
if (enabled)
pm3393_enable(cmac, MAC_DIRECTION_RX);
return 0;
}
static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed,
int *duplex, int *fc)
{
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
if (fc)
*fc = cmac->instance->fc;
return 0;
}
static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex,
int fc)
{
if (speed >= 0 && speed != SPEED_10000)
return -1;
if (duplex >= 0 && duplex != DUPLEX_FULL)
return -1;
if (fc & ~(PAUSE_TX | PAUSE_RX))
return -1;
if (fc != cmac->instance->fc) {
cmac->instance->fc = (u8) fc;
if (cmac->instance->enabled & MAC_DIRECTION_TX)
pm3393_enable(cmac, MAC_DIRECTION_TX);
}
return 0;
}
#define RMON_UPDATE(mac, name, stat_name) \
{ \
t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \
t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \
t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \
(mac)->stats.stat_name = (u64)(val0 & 0xffff) | \
((u64)(val1 & 0xffff) << 16) | \
((u64)(val2 & 0xff) << 32) | \
((mac)->stats.stat_name & \
0xffffff0000000000ULL); \
if (ro & \
(1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \
(mac)->stats.stat_name += 1ULL << 40; \
}
static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac,
int flag)
{
u64 ro;
u32 val0, val1, val2, val3;
/* Snap the counters */
pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
SUNI1x10GEXP_BITMSK_MSTAT_SNAP);
/* Counter rollover, clear on read */
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2);
pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3);
ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) |
(((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48);
/* Rx stats */
RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK);
RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK);
RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK);
RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK);
RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames);
RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors);
RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors,
RxInternalMACRcvError);
RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors);
RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors);
RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors);
RMON_UPDATE(mac, RxJabbers, RxJabberErrors);
RMON_UPDATE(mac, RxFragments, RxRuntErrors);
RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors);
RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK);
RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK);
/* Tx stats */
RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK);
RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError,
TxInternalMACXmitError);
RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors);
RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK);
RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK);
RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK);
RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames);
RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK);
RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK);
return &mac->stats;
}
static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6])
{
memcpy(mac_addr, cmac->instance->mac_addr, 6);
return 0;
}
static int pm3393_macaddress_set(struct cmac *cmac, u8 ma[6])
{
u32 val, lo, mid, hi, enabled = cmac->instance->enabled;
/*
* MAC addr: 00:07:43:00:13:09
*
* ma[5] = 0x09
* ma[4] = 0x13
* ma[3] = 0x00
* ma[2] = 0x43
* ma[1] = 0x07
* ma[0] = 0x00
*
* The PM3393 requires byte swapping and reverse order entry
* when programming MAC addresses:
*
* low_bits[15:0] = ma[1]:ma[0]
* mid_bits[31:16] = ma[3]:ma[2]
* high_bits[47:32] = ma[5]:ma[4]
*/
/* Store local copy */
memcpy(cmac->instance->mac_addr, ma, 6);
lo = ((u32) ma[1] << 8) | (u32) ma[0];
mid = ((u32) ma[3] << 8) | (u32) ma[2];
hi = ((u32) ma[5] << 8) | (u32) ma[4];
/* Disable Rx/Tx MAC before configuring it. */
if (enabled)
pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
/* Set RXXG Station Address */
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi);
/* Set TXXG Station Address */
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi);
/* Setup Exact Match Filter 1 with our MAC address
*
* Must disable exact match filter before configuring it.
*/
pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val);
val &= 0xff0f;
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid);
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi);
val |= 0x0090;
pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
if (enabled)
pm3393_enable(cmac, enabled);
return 0;
}
static void pm3393_destroy(struct cmac *cmac)
{
kfree(cmac);
}
static struct cmac_ops pm3393_ops = {
.destroy = pm3393_destroy,
.reset = pm3393_reset,
.interrupt_enable = pm3393_interrupt_enable,
.interrupt_disable = pm3393_interrupt_disable,
.interrupt_clear = pm3393_interrupt_clear,
.interrupt_handler = pm3393_interrupt_handler,
.enable = pm3393_enable_port,
.disable = pm3393_disable,
.loopback_enable = pm3393_loopback_enable,
.loopback_disable = pm3393_loopback_disable,
.set_mtu = pm3393_set_mtu,
.set_rx_mode = pm3393_set_rx_mode,
.get_speed_duplex_fc = pm3393_get_speed_duplex_fc,
.set_speed_duplex_fc = pm3393_set_speed_duplex_fc,
.statistics_update = pm3393_update_statistics,
.macaddress_get = pm3393_macaddress_get,
.macaddress_set = pm3393_macaddress_set
};
static struct cmac *pm3393_mac_create(adapter_t *adapter, int index)
{
struct cmac *cmac;
cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL);
if (!cmac)
return NULL;
cmac->ops = &pm3393_ops;
cmac->instance = (cmac_instance *) (cmac + 1);
cmac->adapter = adapter;
cmac->instance->fc = PAUSE_TX | PAUSE_RX;
t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000);
t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000);
t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800);
t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */
t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800);
t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00);
t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */
t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */
t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */
t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */
t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */
t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */
t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */
t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */
t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */
t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */
t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */
t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */
t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */
t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */
t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */
t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */
t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */
t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */
t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */
t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */
t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */
t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */
t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */
t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */
t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */
t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */
t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */
t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */
t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */
t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */
t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */
t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */
/* For T1 use timer based Mac flow control. */
t1_tpi_write(adapter, OFFSET(0x304d), 0x8000);
t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */
t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */
t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */
/* Setup Exact Match Filter 0 to allow broadcast packets.
*/
t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */
t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */
t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */
t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */
t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */
t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */
t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */
t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */
return cmac;
}
static int pm3393_mac_reset(adapter_t * adapter)
{
u32 val;
u32 x;
u32 is_pl4_reset_finished;
u32 is_pl4_outof_lock;
u32 is_xaui_mabc_pll_locked;
u32 successful_reset;
int i;
/* The following steps are required to properly reset
* the PM3393. This information is provided in the
* PM3393 datasheet (Issue 2: November 2002)
* section 13.1 -- Device Reset.
*
* The PM3393 has three types of components that are
* individually reset:
*
* DRESETB - Digital circuitry
* PL4_ARESETB - PL4 analog circuitry
* XAUI_ARESETB - XAUI bus analog circuitry
*
* Steps to reset PM3393 using RSTB pin:
*
* 1. Assert RSTB pin low ( write 0 )
* 2. Wait at least 1ms to initiate a complete initialization of device.
* 3. Wait until all external clocks and REFSEL are stable.
* 4. Wait minimum of 1ms. (after external clocks and REFEL are stable)
* 5. De-assert RSTB ( write 1 )
* 6. Wait until internal timers to expires after ~14ms.
* - Allows analog clock synthesizer(PL4CSU) to stabilize to
* selected reference frequency before allowing the digital
* portion of the device to operate.
* 7. Wait at least 200us for XAUI interface to stabilize.
* 8. Verify the PM3393 came out of reset successfully.
* Set successful reset flag if everything worked else try again
* a few more times.
*/
successful_reset = 0;
for (i = 0; i < 3 && !successful_reset; i++) {
/* 1 */
t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~1;
t1_tpi_write(adapter, A_ELMER0_GPO, val);
/* 2 */
msleep(1);
/* 3 */
msleep(1);
/* 4 */
msleep(2 /*1 extra ms for safety */ );
/* 5 */
val |= 1;
t1_tpi_write(adapter, A_ELMER0_GPO, val);
/* 6 */
msleep(15 /*1 extra ms for safety */ );
/* 7 */
msleep(1);
/* 8 */
/* Has PL4 analog block come out of reset correctly? */
t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val);
is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED);
/* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence
* figure out why? */
/* Have all PL4 block clocks locked? */
x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL
/*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ |
SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL |
SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL |
SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL);
is_pl4_outof_lock = (val & x);
/* ??? If this fails, might be able to software reset the XAUI part
* and try to recover... thus saving us from doing another HW reset */
/* Has the XAUI MABC PLL circuitry stablized? */
is_xaui_mabc_pll_locked =
(val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED);
successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock
&& is_xaui_mabc_pll_locked);
if (netif_msg_hw(adapter))
dev_dbg(&adapter->pdev->dev,
"PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, "
"is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n",
i, is_pl4_reset_finished, val,
is_pl4_outof_lock, is_xaui_mabc_pll_locked);
}
return successful_reset ? 0 : 1;
}
const struct gmac t1_pm3393_ops = {
.stats_update_period = STATS_TICK_SECS,
.create = pm3393_mac_create,
.reset = pm3393_mac_reset,
};