tg3: Move tg3_nvram_write_block functions

This patch moves the tg3_nvram_write_block functions higher in the file
to eliminate a prototype.

Signed-off-by: Matt Carlson <mcarlson@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Matt Carlson 2012-02-13 10:20:09 +00:00 committed by David S. Miller
parent ccd5ba9db5
commit dbe9b92a60

View File

@ -2978,6 +2978,256 @@ static int tg3_nvram_read_be32(struct tg3 *tp, u32 offset, __be32 *val)
return res;
}
static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp,
u32 offset, u32 len, u8 *buf)
{
int i, j, rc = 0;
u32 val;
for (i = 0; i < len; i += 4) {
u32 addr;
__be32 data;
addr = offset + i;
memcpy(&data, buf + i, 4);
/*
* The SEEPROM interface expects the data to always be opposite
* the native endian format. We accomplish this by reversing
* all the operations that would have been performed on the
* data from a call to tg3_nvram_read_be32().
*/
tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data)));
val = tr32(GRC_EEPROM_ADDR);
tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE);
val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR, val |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
(addr & EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_START |
EEPROM_ADDR_WRITE);
for (j = 0; j < 1000; j++) {
val = tr32(GRC_EEPROM_ADDR);
if (val & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(val & EEPROM_ADDR_COMPLETE)) {
rc = -EBUSY;
break;
}
}
return rc;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int ret = 0;
u32 pagesize = tp->nvram_pagesize;
u32 pagemask = pagesize - 1;
u32 nvram_cmd;
u8 *tmp;
tmp = kmalloc(pagesize, GFP_KERNEL);
if (tmp == NULL)
return -ENOMEM;
while (len) {
int j;
u32 phy_addr, page_off, size;
phy_addr = offset & ~pagemask;
for (j = 0; j < pagesize; j += 4) {
ret = tg3_nvram_read_be32(tp, phy_addr + j,
(__be32 *) (tmp + j));
if (ret)
break;
}
if (ret)
break;
page_off = offset & pagemask;
size = pagesize;
if (len < size)
size = len;
len -= size;
memcpy(tmp + page_off, buf, size);
offset = offset + (pagesize - page_off);
tg3_enable_nvram_access(tp);
/*
* Before we can erase the flash page, we need
* to issue a special "write enable" command.
*/
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Erase the target page */
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Issue another write enable to start the write. */
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
for (j = 0; j < pagesize; j += 4) {
__be32 data;
data = *((__be32 *) (tmp + j));
tw32(NVRAM_WRDATA, be32_to_cpu(data));
tw32(NVRAM_ADDR, phy_addr + j);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE |
NVRAM_CMD_WR;
if (j == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
else if (j == (pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
if (ret)
break;
}
if (ret)
break;
}
nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE;
tg3_nvram_exec_cmd(tp, nvram_cmd);
kfree(tmp);
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int i, ret = 0;
for (i = 0; i < len; i += 4, offset += 4) {
u32 page_off, phy_addr, nvram_cmd;
__be32 data;
memcpy(&data, buf + i, 4);
tw32(NVRAM_WRDATA, be32_to_cpu(data));
page_off = offset % tp->nvram_pagesize;
phy_addr = tg3_nvram_phys_addr(tp, offset);
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR;
if (page_off == 0 || i == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
if (page_off == (tp->nvram_pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (i == (len - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5752 &&
!tg3_flag(tp, 5755_PLUS) &&
(tp->nvram_jedecnum == JEDEC_ST) &&
(nvram_cmd & NVRAM_CMD_FIRST)) {
u32 cmd;
cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
ret = tg3_nvram_exec_cmd(tp, cmd);
if (ret)
break;
}
if (!tg3_flag(tp, FLASH)) {
/* We always do complete word writes to eeprom. */
nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
}
ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
if (ret)
break;
}
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
{
int ret;
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
~GRC_LCLCTRL_GPIO_OUTPUT1);
udelay(40);
}
if (!tg3_flag(tp, NVRAM)) {
ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf);
} else {
u32 grc_mode;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM))
tw32(NVRAM_WRITE1, 0x406);
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE);
if (tg3_flag(tp, NVRAM_BUFFERED) || !tg3_flag(tp, FLASH)) {
ret = tg3_nvram_write_block_buffered(tp, offset, len,
buf);
} else {
ret = tg3_nvram_write_block_unbuffered(tp, offset, len,
buf);
}
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
}
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(40);
}
return ret;
}
#define RX_CPU_SCRATCH_BASE 0x30000
#define RX_CPU_SCRATCH_SIZE 0x04000
#define TX_CPU_SCRATCH_BASE 0x34000
@ -10147,8 +10397,6 @@ static int tg3_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
return 0;
}
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf);
static int tg3_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
struct tg3 *tp = netdev_priv(dev);
@ -12745,254 +12993,6 @@ static void __devinit tg3_nvram_init(struct tg3 *tp)
}
}
static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp,
u32 offset, u32 len, u8 *buf)
{
int i, j, rc = 0;
u32 val;
for (i = 0; i < len; i += 4) {
u32 addr;
__be32 data;
addr = offset + i;
memcpy(&data, buf + i, 4);
/*
* The SEEPROM interface expects the data to always be opposite
* the native endian format. We accomplish this by reversing
* all the operations that would have been performed on the
* data from a call to tg3_nvram_read_be32().
*/
tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data)));
val = tr32(GRC_EEPROM_ADDR);
tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE);
val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK |
EEPROM_ADDR_READ);
tw32(GRC_EEPROM_ADDR, val |
(0 << EEPROM_ADDR_DEVID_SHIFT) |
(addr & EEPROM_ADDR_ADDR_MASK) |
EEPROM_ADDR_START |
EEPROM_ADDR_WRITE);
for (j = 0; j < 1000; j++) {
val = tr32(GRC_EEPROM_ADDR);
if (val & EEPROM_ADDR_COMPLETE)
break;
msleep(1);
}
if (!(val & EEPROM_ADDR_COMPLETE)) {
rc = -EBUSY;
break;
}
}
return rc;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int ret = 0;
u32 pagesize = tp->nvram_pagesize;
u32 pagemask = pagesize - 1;
u32 nvram_cmd;
u8 *tmp;
tmp = kmalloc(pagesize, GFP_KERNEL);
if (tmp == NULL)
return -ENOMEM;
while (len) {
int j;
u32 phy_addr, page_off, size;
phy_addr = offset & ~pagemask;
for (j = 0; j < pagesize; j += 4) {
ret = tg3_nvram_read_be32(tp, phy_addr + j,
(__be32 *) (tmp + j));
if (ret)
break;
}
if (ret)
break;
page_off = offset & pagemask;
size = pagesize;
if (len < size)
size = len;
len -= size;
memcpy(tmp + page_off, buf, size);
offset = offset + (pagesize - page_off);
tg3_enable_nvram_access(tp);
/*
* Before we can erase the flash page, we need
* to issue a special "write enable" command.
*/
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Erase the target page */
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
/* Issue another write enable to start the write. */
nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
if (tg3_nvram_exec_cmd(tp, nvram_cmd))
break;
for (j = 0; j < pagesize; j += 4) {
__be32 data;
data = *((__be32 *) (tmp + j));
tw32(NVRAM_WRDATA, be32_to_cpu(data));
tw32(NVRAM_ADDR, phy_addr + j);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE |
NVRAM_CMD_WR;
if (j == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
else if (j == (pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if ((ret = tg3_nvram_exec_cmd(tp, nvram_cmd)))
break;
}
if (ret)
break;
}
nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE;
tg3_nvram_exec_cmd(tp, nvram_cmd);
kfree(tmp);
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len,
u8 *buf)
{
int i, ret = 0;
for (i = 0; i < len; i += 4, offset += 4) {
u32 page_off, phy_addr, nvram_cmd;
__be32 data;
memcpy(&data, buf + i, 4);
tw32(NVRAM_WRDATA, be32_to_cpu(data));
page_off = offset % tp->nvram_pagesize;
phy_addr = tg3_nvram_phys_addr(tp, offset);
tw32(NVRAM_ADDR, phy_addr);
nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR;
if (page_off == 0 || i == 0)
nvram_cmd |= NVRAM_CMD_FIRST;
if (page_off == (tp->nvram_pagesize - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (i == (len - 4))
nvram_cmd |= NVRAM_CMD_LAST;
if (GET_ASIC_REV(tp->pci_chip_rev_id) != ASIC_REV_5752 &&
!tg3_flag(tp, 5755_PLUS) &&
(tp->nvram_jedecnum == JEDEC_ST) &&
(nvram_cmd & NVRAM_CMD_FIRST)) {
if ((ret = tg3_nvram_exec_cmd(tp,
NVRAM_CMD_WREN | NVRAM_CMD_GO |
NVRAM_CMD_DONE)))
break;
}
if (!tg3_flag(tp, FLASH)) {
/* We always do complete word writes to eeprom. */
nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
}
if ((ret = tg3_nvram_exec_cmd(tp, nvram_cmd)))
break;
}
return ret;
}
/* offset and length are dword aligned */
static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
{
int ret;
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
~GRC_LCLCTRL_GPIO_OUTPUT1);
udelay(40);
}
if (!tg3_flag(tp, NVRAM)) {
ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf);
} else {
u32 grc_mode;
ret = tg3_nvram_lock(tp);
if (ret)
return ret;
tg3_enable_nvram_access(tp);
if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM))
tw32(NVRAM_WRITE1, 0x406);
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE);
if (tg3_flag(tp, NVRAM_BUFFERED) || !tg3_flag(tp, FLASH)) {
ret = tg3_nvram_write_block_buffered(tp, offset, len,
buf);
} else {
ret = tg3_nvram_write_block_unbuffered(tp, offset, len,
buf);
}
grc_mode = tr32(GRC_MODE);
tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE);
tg3_disable_nvram_access(tp);
tg3_nvram_unlock(tp);
}
if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
udelay(40);
}
return ret;
}
struct subsys_tbl_ent {
u16 subsys_vendor, subsys_devid;
u32 phy_id;